Гифы – определение, функции и структура; fissi

что представляют собой гифы гриба. Гифы – определение, функции и структура; fissi Характерные особенности видовой категории.

Гифы гриба – это тонкие нити из которых состоит организм гриба. Гифы мицелия располагаются под землёй. Эти отростки обеспечивают организму коммуникацию с внешней средой.

  1. Общая характеристика
  2. Структура гриба
  3. Что такое гифы
  4. Виды
  5. Функции
  6. Питание
  7. Размножение

Общая характеристика

В грибах есть совокупность признаков животных и растений. С растительным миром их роднят нижеуказанные черты:

  • выразительно представлена клеточная стенка;
  • прикрепленный способ жизни;
  • неограниченный рост;
  • размножаются спорами;
  • могут синтезировать витамины;
  • наличие вакуолей;
  • абсорбтивный способ питания.

С животными схожи такие приметы:

  • наличие хитина;
  • отсутствие всех типов пластид, в том числе и фотосинтезирующих;
  • гетеротрофность;
  • накапливают гликоген;
  • продукт метаболизма – мочевина.

Из-за такой специфики структуры и функционирования, их причисляют к старейшему виду эукариотов. Но у них нет эволюционной связи с растениями. Сегодня изучено более 100 000 видов этих представителей живой природы нашей планеты. Правда, учёные считают – настоящая цифра гораздо выше и может достигать 250 000 или даже 1,5 млн.

Структура гриба

Шляпка и ножка – это плодовое тело. А «рабочая» часть – мицелий или грибница – располагается внутри древесины, почвы или субстрата. Плодовое тело живёт недолго, около 10-15 дней. Грибница может жить даже сотни лет. Она устойчива к низким температурам и засухе.

При неблагоприятных условиях грибница приостанавливает своё развитие. В подходящих условиях мицелий «просыпается» и продолжает разрастаться, но плодовых тел может не формировать. Грибница состоит из тоненьких переплетающихся нитей – гифов.

Что такое гифы

Гиф гриба – типичная морфологическая структурная единица данного организма.

Это трубка в форме цилиндра (от 5 до 10 мкм в диаметре). Есть виды, у которых гифы вырастают до 170 мкм. Внутри оболочки тонких нитей находится многоядерная плазма, она образовывает новые клетки на кончике.

Ирина Селютина (Биолог):

Гифы способны объединяться в:

  • ризоморфы: более-менее рыхлые тяжи (длиной в несколько метров толщиной в несколько миллиметров);
  • склероции: плотные сплетения из которых формируются органы плодоношения.

Вся совокупность гиф гриба составляет мицелий (грибницу). Та ее часть, которая расположена в почве и соответственно скрыта от глаз человека называется «вегетативное тело». Часть, находящаяся над поверхностью почвы и предназначенная для спороношения, у шляпочных грибов мы называем «плодовое тело». Группы гиф, которые плотно переплетаются в плодовых телах, образуют плектенхиму или ложную ткань, или псевдопаренхиму. По внешнему виду плектенхима напоминает основную ткань растений – паренхиму, однако образована она не трехмерно делящимися клетками, а просто сближенными гифами. Слой гиф, покрывающих шляпку, содержит в себе пигменты, придающие ей специфическую окраску.

Грибницы постоянно растут в длину, в конце нити начинают разветвляться, а протоплазма беспрерывно продвигается к молодой части нити. Постаревшие участки могут отделяться стенкой, которая появляется из-за врастания оболочки гифы.

Гифы впитывают полезные вещества

Грибные гифы не имеют окраса. Иногда отростки становятся желтоватого или коричневого оттенка.

В зависимости от наличия перегородок, нити можно разделить на группы:

  1. Асептированые: гифы без диаметральных стенок, т.е. неклеточные. Присущи низшим грибам.
  2. Септированые: обладают перегородками (в центре которых сохраняются отверстия), которые создают индивидуальные клетки, поэтому именуются ещё многоклеточными. Все высшие: шляпочные, часть плесневых грибов и другие имеют этот вид гифов.

Функции

Гифы гриба имеют основную задачу – поглощение, передача полезных веществ и размножение.

Питание

Абсорбция воды и пищи – главная функция гифов.

Есть нити, модифицирующиеся в гаустории, ловчие петли и другое. По характеру питания все грибы являются гетеротрофами, однако по типу питания они разделяются на:

  • Сапротрофы: большая часть плесневых, шляпочных грибов и дрожжи. Специфика в том, что организм способен создать грибницу из гифов длиной больше километра. Благодаря этому организм плотно общается с внешней средой.
  • Паразиты: питаются за счет других живых организмов.
  • Симбионты (симбиотрофы): вступают во взаимовыгодные взаимоотношения с представителями других видов живых организмов, формируя микоризу.
  • Хищные грибы: способны к поеданию некоторых животных организмов, однако способны жить как сапротрофы.

Ирина Селютина (Биолог):

На данный момент большинство микологов склоняется к мнению, что сапротрофный тип питания грибов является первичным, а вот паразитизм – вторичный, возникший в процессе эволюции как результат приспособления к жизни в новых, часто неблагоприятных условиях при конкуренции за места обитания. Сейчас известно более 10 000 видов грибов-паразитов, способных проживать на разнообразных растениях и животных, других грибах и лишайниках. Поэтому они весьма разнообразны как по образу жизни, так и по питанию. Часть видов является узко приспособленными и питаются только на одном виде организма-хозяина. Другие же наоборот, способны использовать в своих целях ряд видов хозяев принадлежащих не только к разным семействам, но даже к другим царствам живой природы.

Практически каждая клетка грибницы отделяется от окружающей среды тоненькой клеточной перегородкой. Пищеварительные ферменты влияют на питательную среду и способствуют ее перевариванию за пределами клетки. Далее таким образом подготовленный продукт поглощается уже всей клеткой.

Размножение

Грибы могут размножаться тремя способами:

  1. Бесполое: размножение проходит через эндо- и экзогенные споры. Эндогенные образуются внутри спорангиев. А экзогенные споры развиваются на отростках грибницы – конидиеносцах. Когда спора оказывается в подходящей обстановке – она пробуждается, растёт и появляется грибница.
  2. Половое: этот вид размножения характеризуется своим многообразием. Отдельные виды организмов размножаются посредством объединения внутренностей двух клеток, находящихся на кончиках гиф.
  3. Вегетативное: осуществляется несколькими видами:
  • при отделении от основной массы мицелия его частей, способных к самостоятельному развитию;
  • артроспорами (оидиями), которые образуются при распадении гиф на отдельные короткие клетки, каждая из которых дает начало новому организму;
  • хламидоспорами: они имеют толстую темнокрашенную оболочку, способны переносить неблагоприятные условия, прорастая затем чаще всего мицелием;
  • почкованием: всего мицелия или отдельных клеток.

Заключение

Гифы у грибов растут с разной скоростью. Это зависит от питательной среды, особенностей организма, внешних факторов и многого другого. От скорости роста зависит скорость увеличения колонии грибов.

Иногда грибные гифы меняются. Некоторые меняют внешность из-за адаптации к исполнению некоторых функций. Так, есть гриб, который состоит из гиф в форме дуги. Благодаря им организм расширяет границы своей популяции. А у большого количества грибов-паразитов образуются апрессории. Ими гриб может прикрепляться к разным поверхностям. Ещё гифы вступают во взаимоотношения с высшими растениями или водорослями.

Гифы – определение, функции и структура

Определение гифы

Гифы состоят из гиф, которые являются длинными нитевидными ветвями, найденными в грибы и актинобактерии (показаны ниже). Гифы являются важными структурами, необходимыми для роста в этих вид и вместе называются мицелием.

Структура гифы

Каждая гифа состоит как минимум из одного клетка заключен в защитный клеточная стенка как правило, из хитин и содержат внутренние перегородки, которые служат для разделения клеток. Септы важны, поскольку они позволяют клеточным органеллам (например, рибосомам) проходить между клетками через большие поры. Однако не все виды грибов содержат септу. Средние гифы имеют размер приблизительно от 4 до 6 микрон.

Рост гифы

Рост гифы происходит путем расширения клеточных стенок и внутренних компонентов от кончиков. Во время роста наконечника, специализированный органеллы называется spitzenkörper, помогает в формировании новых клеточных стенок и мембранных структур путем укрытия пузырьков, полученных из аппарат Гольджи и выпуская их вдоль вершины гифы. Когда spitzenkörper движется, верхушка гифы расширяется за счет освобождения везикул содержимое, которое образует клеточную стенку, и везикулярные мембраны, которые создают новый клеточная мембрана, По мере расширения гифы могут создаваться новые септы для внутреннего разделения клеток. Характерное ветвление гиф является результатом образования нового кончика из гиф или деления растущего кончика (см. Диаграмму ниже).

Функция гифы

Гифы связаны с множеством различных функций, в зависимости от конкретных требований каждого вида грибов. Ниже приведен список наиболее известных функций гифов:

Поглощение питательных веществ от хозяина

Некоторые гифы паразитических грибов специализируются на усвоении питательных веществ у конкретного хозяина. Эти гифы имеют специальные наконечники, называемые haustoria, которые проникают в клеточные стенки растений или тканей других организмов для получения питательных веществ.

Поглощение питательных веществ из почвы

У некоторых видов грибов (например, mycorrihizae) появились симбиотические отношения с сосудистое растение виды. Грибы образуют специализированные гифы, называемые арбускулы, которые можно найти в корнях или филюм сосудистых растений, и функция поглощать питательные вещества и воду из почвы. Таким образом, гифы помогают растениям, увеличивая их доступ к питательным веществам в почве, одновременно способствуя их собственному росту.

Структуры ловушек

У некоторых видов грибов гифы эволюционировали в специализированные ловушки нематод, используя сети и кольцевые структуры для захвата видов нематод.

Транспортировка питательных веществ

Некоторые виды грибов имеют гифы, состоящие из аккордовидных структур, называемых мицелиальными аккордами, которые используются грибами (например, лишайниками и грибами) для транспортировки питательных веществ на большие расстояния.

Классификация гиф

В общем, гифы можно классифицировать по следующим признакам:

Характеристики гифы

Характеристики гифы являются важным методом классификации различных видов грибов. Есть три основных характеристики гиф:

  • Связывание: связывающие гифы имеют толстую клеточную стенку и сильно разветвлены.
  • Генеративные: генеративные гифы имеют тонкую клеточную стенку, большое количество септ и обычно менее дифференцированы. Генеративные гифы также могут содержаться в других материалах (например, желатине или слизи) и могут также создавать структуры, используемые при размножении. Все виды грибов обычно содержат генеративные гифы.
  • Скелетные: скелетные гифы содержат длинную и толстую клеточную стенку с небольшим количеством перегородок. Скелетные гифы также могут быть веретенообразного подтипа с опухшим срединным сечением, окруженным коническими концами.

Гифа Состав

Грибковые виды также дополнительно классифицируются на основе содержащихся в них гифных систем. Существует четыре основных подтипа:

  • Мономитный: в то время как практически все виды грибов содержат генеративные гифы, те, у кого этот тип только проявляется, называются мономитными (например, грибы с мухоморами).
  • Dimitic: вид, который содержит генеративные гифы в дополнение к еще одному типу гиф. Наиболее распространенная комбинация димитических грибов является генеративной и скелетной.
  • Trimitic: Виды, которые содержат все три типа гиф (генеративные, связывающие и скелетные).
  • Sarcodimitic и sarcotrimitic: Sarcodimitic гифы – веретенообразные скелетные гифы, связанные с генеративными гифами. Саркотримитовые виды содержат веретенообразные скелетные гифы, а также связывающие и генеративные гифы.

Рефракция гифы

Под микроскопом появление масляных или зернистых гиф под микроскопом называют глистопереносным. Этот термин также используется для дальнейшей классификации гиф различных видов.

Деление клеток

Гифы могут быть классифицированы на основе наличия внутренних перегородок (септат против асептат). Гифы также можно отличить от видов, которые производят псевдогифы через деление клеток, Псевдогифы – это форма неполного деления клеток, при которой делящиеся клетки не разделяются. Есть несколько видов дрожжей, которые производят такие псевдогифы.

викторина

1. Какое из следующих утверждений является ИСТИННЫМ в отношении гиф?A. Все грибы содержат гифы скелета.B. Все гифы содержат септы.C. Грибные виды могут проявлять как генеративные, так и связывающие гифы.D. Веретенообразные скелетные гифы являются формой псевдогиф.

Ответ на вопрос № 1

С верно. Считается, что грибковые виды имеют димитовые гифы, если они обладают как генными, так и связывающими гифами. Все грибы содержат генеративные гифы, но не все демонстрируют скелетные гифы. Гифы могут быть асептатными, поскольку они не содержат перегородок. Веретенообразные скелетные гифы являются настоящими гифами, тогда как псевдогифы относятся к форме неполного клеточного деления, проявляемой некоторыми видами дрожжей.

2. Что из перечисленного НЕ является основной функцией гифов:A. Поглощение питательных веществ из почвыB. Перевозка питательных веществC. Поглощение питательных веществ из тканей хозяинаD. Все вышеперечисленноеE. Только A и B являются основными функциями

Ответ на вопрос № 2

D верно. Основная функция гифов – поглощать питательные вещества из местной окружающей среды и транспортировать их по мере необходимости.

Что такое гифы: особенности строения грибов

Вольфрамовая нить ломается, вызывая короткое замыкание электрической цепи, которое заставляет нить светиться.

21. Ферромагнитная жидкость в стеклянной банке

Ферромагнитная жидкость – это жидкость, которая сильно намагничивается в присутствии магнитного поля. Она используется в жестких дисках и в машиностроении.

Еще ферромагнитной жидкости.

22. Йод + алюминий

Окисление тонкодисперсного алюминия происходит в воде, формируя темно-фиолетовые пары.

23. Рубидий + вода

Химические опыты

11. Галлий в горячей воде

Галлий, который в основном используется в электронике, имеет температуру плавления составляющую 29,4 градуса по Цельсию, а значит будет плавиться в руках.

12. Медленный переход бета-олова в альфа-модификацию

При холодной температуре бета-аллотроп олова (серебристый, металлический) самопроизвольно переходит в альфа-аллотроп (серый, порошкообразный).

13. Полиакрилат натрия + вода

Полиакрилат натрия – тот же материла, который используется в детских подгузниках, действует как губка, впитывая влагу. При смешивании с водой, соединение превращается в твердый гель, а вода уже не является жидкостью и не может выливаться.

14. Газ Радон 220 впрыснут в туманную камеру

Следы в форме буквы V появляются благодаря двум альфа частицам (ядер гелия-4), которые выделяются, когда радон распадается на полоний, а затем свинец.

Химические реакции


1. «Фараонова змея» — распад тиоцианата ртути

Горение тиоцианата ртути приводит к его разложению на три других химических вещества. Эти три химических вещества в свою очередь разлагаются на еще три вещества, что приводит к развертыванию огромной «змеи».

2. Горящая спичка

Спичечная головка содержит красный фосфор, серу и бертолетову соль. Тепло, генерируемое фосфором, разлагает бертолетову соль и в процессе высвобождает кислород. Кислород в сочетании с серой производит кратковременное пламя, которое мы используем, чтобы зажечь, например, свечу.

3. Огонь + водород

Газообразный водород легче воздуха и его можно разжечь пламенем или искрой, что приведет к впечатляющему взрыву. Вот почему сейчас чаще используется гелий, а не водород для наполнения аэростатов.

4. Ртуть + алюминий

Ртуть проникает сквозь защитный слой окиси (ржавчину) алюминия, заставляя его ржаветь намного быстрее.

Кто же эти основные фигуранты бродильных реакций

Бактерии-бродильщики

Бактерии брожения – большая группа микроорганизмов в царстве прокариотов, которая питается и дышит сахарами. Именно так. Общий механизм метаболизма таких бактерий настроен на потребление природных сахаров.

Бактерии являются безъядерными организмами, которые не в состоянии организоваться в многоклеточные организмы, а только образовывают небольшие микробные колонии.

Часто бактерий путают с вирусами, якобы и вирусы, и бактерии – микробы, и разница известна только специалистам-микробиологам.

Но это далеко не так, вирусы совершенно другое по устройству и по способу жизни создание. Именно создание. Поскольку вирусы даже организмами невозможно назвать. Вирус – отрывок генетического материала ДНК или РНК макромолекулы, который проникает в живые клетки (эукариоты или прокариоты), атакует ДНК таких клеток и перенастраивает эту ДНК на производство тех белков, которые необходимы для сборки новых вирусов, а не тех, что нужны живой клетке-хозяину.

За считанные минуты живая клетка становится фабрикой по производству вирусов. После того как клеточная мембрана клетки уже не в состоянии вмещать все потомство вируса, она разрывается, оказавшиеся в межклеточном пространстве вирусы начинают атаковать новые клетки, захватывая их ДНК и налаживая производство все новых и новых вирусов.

Основными известными человеку бактериями-бродильщиками являются молочнокислые бактерии, они, как и дрожжи, широко используются в пищевой промышленности и являются основой для производства молочнокислых продуктов, польза которых очевидна.

Основные молочнокислые бактерии – это:

  • палочки лактобактерии;
  • нитевидные бифидобактерии;
  • шаровидные стрептококки.

Несмотря на то что представители каждого из указанных биологических родов могут входить в состав кисломолочных продуктов, основное место обитания и естественный резервуар этих микробов – кишечник человека или других животных.

В кишечнике эти молочнокислые бактерии сбраживают поступающие с пищей органические сахара. В ходе брожения они вырабатывают молочную кислоту, которая сама по себе создает в кишечнике кислую среду. Такая кислая среда деактивирует деятельность патогенных микробов, которых в том же кишечнике присутствует большое количество.

Таким образом, продукты брожения идут кишечнику и всему человеческому организму только на пользу.

Но так ли все оптимистично обстоит с продуктами брожения одноклеточных грибов, которые с пищей также попадают в пищеварительную систему человека.

Грибы-бродильщики

Одноклеточные дрожжевые грибы принадлежат к совершенно другому царству органической жизни. Они – эукариоты.

Одноклеточные грибы-эукариоты – самостоятельные клетки, которые также не образовывают многоклеточные организмы, а в естественной среде существуют небольшими колониями на подходящем питательном субстрате.

Дрожжевые грибы не образуют мицелия (нитевидные грибные структуры), а на предметном стекле микроскопа выглядят как микроскопические каплевидные образования.

Попадая на субстрат, богатый органическими сахарами, в отсутствии кислорода дрожжи запускают процесс спиртового брожения. Весь механизм брожения проходит в три основных стадии:

  1. Процесс преобразования глюкозы начинается с гликолиза (окисления глюкозы), продуктом которого выделяется пируват.
  2. В результате химического преобразования пирувата производится уксусный альдегид (ацетальдегид).
  3. Ацетальдегид восстанавливается водородом до этанола с образованием углекислого газа.

Может возникнуть вопрос: какое отношение этот биохимический процесс имеет к хлебопекарным дрожжам, которые используются практически в каждом доме и на каждой кухне. Ответ – самое прямое.

Как таковой опасности хлебопекарные дрожжи или продукты, изготовленные с их использованием, для человека не представляют. Наличие в продуктах пищевой промышленности консервантов, стабилизаторов и прочих ненатуральных ингредиентов, которые позволяют продлить срок хранения и повлиять на определенные характеристики продукта, само по себе вредно. Однако с дрожжами эта проблема никак не связана.

классификация растений

Основные ранги таксонов растений распределены по принципу иерархичности(соподчинения): более крупные таксоны объединяют в себе более мелкие.

вид Ромашка аптечная

Жизненная форма — внешний облик растения.

Основные жизненные формы: дерево, кустарник, кустарничек и трава.

Дерево — многолетнее растение с крупным одревесневшим стволом.

Кустарник — растение с многочисленными некрупными одревесневшими стволами, которые живут не более 10 лет.

Кустарничек — низкорослое многолетнее растение с одревесневшими стволами, высотой до 40 см.

Травы — травянистые зеленые побеги, ежегодно отмирающие. У двулетних и многолетних трав весной из зимующих почек отрастают новые побеги.

Домашние химические опыты

15. Шарики из гидрогеля и разноцветная вода

В данном случае действует диффузия. Гидрогель представляет собой гранулы полимера, которые очень хорошо впитывают воду.

16. Ацетон + пенопласт

Пенопласт состоит из пенополистирола, который, будучи растворенным в ацетоне, выпускает воздух в пену, что создает вид, будто вы растворяете большое количество материала в малом количестве жидкости.

17. Сухой лед + средство для мытья посуды

Сухой лед, помещенный в воду, создает облако, а средство для мытья посуды в воде удерживает углекислый газ и водяной пар в форме пузыря.

18. Капля моющего средства, добавленная к молоку с пищевым красителем

Молоко — это в основном вода, но оно также содержит витамины, минералы, белки и крошечные капли жира, находящиеся во взвешенном состоянии в растворе.

Средство для мытья посуды ослабляет химические связи, которые удерживают белки и жиры в растворе. Молекулы жира сбиваются с толку по мере того, как молекулы мыла начинают метаться, чтобы соединиться с молекулами жира, пока раствор равномерно не перемешается.

19. «Слоновья зубная паста»

Дрожжи и теплую воду наливают в контейнер с моющим средством, перекисью водорода и пищевым красителем. Дрожжи служат катализатором выделения кислорода из перекиси водорода, создавая множество пузырей. В результате образуется экзотермическая реакция, с образованием пены и выделением тепла.

Отдел Аскомицеты (Сумчатые)

  • Около 30 000 видов.
  • Сапротрофные почвенные и плесневые грибов, поселяющиеся на хлебе, овощах и других продуктах.
  • Представители: пеницилл, дрожжи, сморчки, строчки, спорынья.
  • Мицелий гаплоидный, септированный, ветвящийся. Через поры цитоплазма и ядра могут переходить в соседние клетки.
  • Бесполое размножение с помощью конидий или почкование (дрожжи).
  • При половом размножении образуются сумки (аски), в которых при мейозе формируются гаплоидные споры полового спороношения.

ДРОЖЖИ

Дрожжи представлены большим числом видов, широко распространенных в природе.

Одноклеточные или двуклеточные грибы, вегетативное тело которых состоит из одноядерных овальных клеток.

Разные виды дрожжей могут существовать в диплоидной или гаплоидной фазах.

Дрожжи характеризуются аэробным обменом веществ. В качестве источника углерода они используют различные сахара, простые и многоатомные спирты, органические кислоты и другие вещества.

Способность сбраживать углеводы, расщепляя глюкозу с образованием этилового спирта и углекислого газа, послужила основой для введения дрожжей в культуру.

С6Н12О6С6Н12О6 → 2С2Н5ОН2С2Н5ОН + 2СО22СО2

Размножаются дрожжи почкованием и половым путем.

При благоприятных условиях дрожжи длительное время размножаются вегетативным способом —почкованием. Почка возникает на одном конце клетки, начинает разрастаться и отделяется от материнской клетки. Часто дочерняя клетка не теряет связи с материнской и сама начинает образовывать почки. В результате образуются короткие цепочки клеток. Однако связь между ними непрочная, и при встряхивании такие цепочки распадаются на отдельные клетки.

При недостатке питания и избытке кислорода происходит половое размножение: сливаются две клетки с образованием диплоидной зиготы. Зигота делится путем мейоза с образованием сумки с 4 аскоспорами. Споры сливаются с образованием новой диплоидной дрожжевой клетки.

Рис. Почкование и половое размножение дрожжей.

ПАРАЗИТИЧЕСКИЕ АСКОМИЦЕТЫ

Спорынья паразитирует на колосьях злаков, нанося большой урон урожаю зерновых культур.

Внешне она напоминает черно-фиолетовые рожки (склероции), выступающие из колоса. Они состоят из плотно переплетенных гиф.

Примеры химических реакций

5. Змеиный яд + кровь

Одна капля яда гадюки, попавшая в чашку Петри с кровью, заставляет ее свернуться в толстый комок твердого вещества. Именно это происходит в нашем теле, когда нас кусает ядовитая змея.

6. Железо + раствор медного купороса

Железо заменяет медь в растворе, превращая медный купорос в железный купорос. Чистая медь собирается на железе.

7. Воспламенение емкости с газом

8. Хлорная таблетка + медицинский спирт в закрытой бутылке

Реакция приводит к увеличению давления и заканчивается разрывом контейнера.

9. Полимеризация п-нитроанилина

На гифке к половине чайной ложки п-нитроанилина или 4-нитроанилина добавляют несколько капель концентрированной серной кислоты.

10. Кровь в перекиси водорода

Фермент в крови, называемый каталаза, превращает перекись водорода в воду и газообразный кислород, создавая пену кислородных пузырей.

Отдел базидиомицеты (шляпочные грибы)

  • Около 30 000 видов.
  • Вегетативное тело образовано разветвленным многоклеточным дикариотический мицелием: в каждой клетке мицелия находятся два гаплоидных ядра.
  • Представители: практически все съедобные и ядовитые грибы, трутовики и две группы паразитических грибов: головневые и ржавчинные грибы.
  • Большинство образуют плодовые тела. Функция плодовых тел: образование спор.

Двуядерный мицелий формирует плодовые тела, известные как шляпочные грибы.

Рис. Строение шляпочных грибов

На нижней стороне шляпки находится спорообразующий слой (гименофор), на котором образуются особые структуры — базидии.

Для увеличения поверхности гименофора, нижняя часть шляпки видоизменяется:

  • у пластинчатых грибов гименофор имеет форму радиально расходящихся пластинок (сыроежка, лисичка, груздь, шампиньон);
  • у трубчатых грибов гименофор имеет вид трубок, плотно прилегающих друг к другу (подберезовик, подосиновик, масленок, боровик).

У некоторых грибов образуется велум (= велюм = покрывало) — тонкая оболочка, защищающая в молодом возрасте плодовое тело гриба:

  • общее покрывало: закрывающее плодовое тело целиком;
  • частное покрывало: закрывает нижнюю поверхность шляпки с гименофором.

При росте гриба покрывала разрываются и остаются на плодовом теле в виде колец и ободка (вольвы) на ножке, различных чешуек и лоскутов, покрывающих шляпку. Наличие остатков покрывал и их признаки важны для определения грибов.

Рис. Остаток покрывала (велума) на мухоморе

ПАРАЗИТИЧЕСКИЕ БАЗИДИОМИЦЕТЫ

Трутовые, головневые и ржавчинные грибы являются паразитами.

Головневые грибы — паразиты злаков.

При поражении головней вместо зерна получается черная пыль, представляющая собой споры гриба. Колосья становятся похожими на обугленные головешки. Заражение некоторыми видами происходит на стадии цветения злаков, когда споры с пораженного растения попадают на рыльца пестиков здоровых растений. Они прорастают, гифы гриба проникают в зародыш семени, и образуется зерновка, внешне здоровая. На следующий год к моменту цветения начинается спороношение гриба, цветки не образуются, и соцветие приобретает обугленный вид.

Грибы-трутовики могут быть паразитами или сапрофитами лиственных пород.

Трутовики имеют трубчатый многолетний гименофор, который ежегодно нарастает снизу.

Спора трутовика, попав на ранку в дереве, прорастает в грибницу и разрушает древесину.

Через несколько лет образуются многолетние копытообразные или дискообразные плодовые тела.

Трутовики выделяют ферменты, разрушающие древесину и превращающие ее в труху. Даже после гибели дерева гриб продолжает жить на мертвом субстрате (как сапротроф), ежегодно производя большое количество спор и заражая здоровые деревья.

Поэтому погибшие деревья и плодовые тела трутовиков рекомендуется удалять из леса.

Рис. Трутовик сосновый (окаймленный трутовик) Рис. Трутовик чешуйчатый (пёстрый)

ОТДЕЛ ДЕЙТЕРОМИЦЕТЫ, ИЛИ НЕСОВЕРШЕННЫЕ ГРИБЫ

  • Дейтеромицеты занимают среди грибов особое положение.
  • Они размножаются только бесполым путем — конидиями.
  • Мицелий септированный.
  • Весь жизненный цикл проходит в гаплоидной стадии, без смены ядерных фаз.

Эти грибы представляют собой «бывшие» аскомицеты или, реже, базидиомицеты, в процессе эволюции утратившие по тем или иным причинам половые спороношения. Таким образом, дейтеромицеты представляет разнородную в филогенетическом отношении группу.

В царстве грибов

У некоторых грибов, например дрожжей, вегетативное тело представлено одиночными почкующимися клетками. Если клетки при почковании не расходятся, из них образуются цепочки – псевдомицелий. Некоторые примитивные грибы имеют одноклеточный таллом, иногда лишенный клеточной стенки.

При формировании плодовых тел и некоторых вегетативных структур гифы плотно переплетаются, образуя ложную ткань – плектенхиму (напомним, что настоящая ткань образуется в результате деления клеток в трех направлениях). У многих грибов гифы соединяются параллельно в хорошо развитые и дифференцированные мицелиальные тяжи – ризоморфы, выполняющие проводящие функции. Они известны, например, у опенка осеннего, у домового гриба. Ризоморфы нередко достигают нескольких метров длины. Гифы их наружных слоев, имеющие утолщенные часто темноокрашенные стенки, выполняют защитную функцию, а внутренние гифы – проводящую.

Другой тип видоизменений мицелия представляют склероции – плотные переплетения гиф, служащие для перенесения неблагоприятных условий. Склероции образует, например, хорошо известная спорынья. Клетки склероциев богаты запасными питательными веществами. Часто склероции дифференцированы на «кору» – наружные слои толстостенных темноокрашенных клеток – и внутреннюю часть, состоящую из тонкостенных светлоокрашенных клеток. Из склероциев развивается мицелий, или органы размножения.

Клетки большинства грибов имеют хорошо выраженные клеточные стенки. В состав клеточной стенки в качестве скелетного компонента обычно входит хитин (у оомицетов – целлюлоза).

Грибы размножаются вегетативным, бесполым и половым путем.

При вегетативном размножении от мицелия отделяются части, давая начало новому мицелию. Формой вегетативного размножения считают также и образование хламидоспор – толстостенных клеток, предназначенных для перенесения неблагоприятных условий. У дрожжей вегетативное размножение происходит путем почкования клеток.

Бесполое размножение осуществляется спорами (рис. 1). Споры могут развиваться внутри специальных вместилищ – спорангиев (эндогенно) или на концах особых выростов мицелия – конидиеносцах (экзогенно).

Рис. 1. Спороношение грибов (схема): А – зооспорангий с зооспорами; Б – спорангий с спорангиоспорами; В – конидиеносец с конидиями; Г – образование аскоспор; Д – образование базидиоспор; М – мейоз

У некоторых грибов бесполое размножение происходит при помощи подвижных зооспор, снабженных жгутиками и способных к самостоятельному движению в воде. Зооспоры развиваются в зооспорангиях и не имеют клеточной стенки. В спорангиях образуются споры, не имеющие жгутиков, – спорангиоспоры. После разрыва оболочки спорангия эти споры распространяются с потоками воздуха. Распространение их облегчается расположением спорангиев на спорангиеносцах – особых гифах, поднимающихся кверху от субстрата.

Конидии также лишены органов движения; распространяются они воздушными течениями, каплями дождя, насекомыми, человеком. При этом они могут переноситься на расстояния, измеряемые сотнями километров. Нередко у одного и того же гриба обнаруживается нескольких типов бесполого спороношения.

Разнообразные формы полового размножения у грибов можно разделить на три большие группы: гаметогамия, гаметангиогамия и соматогамия (рис. 2).

Рис. 2. Формы полового процесса (схема)

Гаметогамия – слияние гамет, образующихся в гаметангиях. Она встречается в трех формах: изогамия – слияние морфологически не различающихся гамет, гетерогамия – слияние гамет, различающихся по размерам и подвижности, и оогамия, когда крупные неподвижные яйцеклетки, формирующиеся в оогониях, оплодотворяются мелкими подвижными сперматозоидами, развивающимися в антеридиях. У некоторых грибов с оогамным половым процессом сперматозоиды не образуются и яйцеклетки оплодотворяются выростами антеридиев.

Гаметангиогамия состоит в слиянии содержимого органов полового размножения: мужской гаметангий – антеридий – отдает свое содержимое в женский гаметангий – архикарп. При этом гаметы не образуются. Разновидность этого процесса, при которой гаметангии внешне не различаются между собой, получила название зигогамия.

При соматогамии объединяется содержимое обычных соматических клеток мицелия – ни гаметы, ни органы полового размножения как таковые не образуются. Хологамию – слияние одноклеточных талломов у грибов, не имеющих развитого мицелия, относят к тому же типу полового процесса.

Систематика грибов

Считать ли грибы растениями? При традиционном делении всех живых организмов на царства животных и растений грибы безоговорочно относили к растениям. Хотя грибы существенно отличаются от растений неспособностью к фотосинтезу и соответственно гетеротрофным способом питания, их объединяли на основе таких черт сходства, как хорошо выраженная клеточная стенка, поглощение питательных веществ из растворов, отсутствие большей частью подвижности в вегетативном состоянии, неограниченный рост (подчеркнем, что при этом грибы безусловно оказывались низшими растениями, как не имеющие настоящих тканей и вегетативных органов).

Однако гетеротрофный способ питания определяет отличный от растений характер обмена веществ у грибов. По таким его признакам, как образование мочевины, накопление гликогена, а не крахмала в качестве запасного углевода, а также из-за присутствия хитина в клеточной стенке грибы сходны с животными (хитин входит в состав наружного скелета насекомых).

В то же время грибы обладают особенностями, не свойственными ни одной другой группе живых организмов. Так, у многих грибов наряду с гаплоидным и диплоидным состоянием присутствует фаза дикариона, когда в одной клетке содержатся два гаплоидных ядра (отметим, что диплоидное состояние у грибов всегда кратковременно; диплоидны лишь отдельные клетки, образующиеся в результате полового процесса; многоклеточного диплоидного мицелия не бывает). Поэтому в настоящее время грибы рассматриваются как самостоятельное царство эукариотических организмов, коренным образом отличающихся как от растений, так и от животных. Однако грибы традиционно остаются объектом науки о растениях и изучаются в курсах ботаники.

Разделение грибов на систематические группы не одинаково у разных исследователей и авторов руководств. Наиболее распространено деление на шесть классов.

Класс хитридиомицеты. Мицелий развит слабо или вегетативное тело представляет собой одиночную клетку, иногда лишенную стенки. Бесполое размножение при помощи зооспор с одним жгутиком. Половой процесс – гаметогамия разных типов или хологамия. В клеточных стенках присутствует хитин.

Класс оомицеты. Мицелий хорошо развитый, неклеточный. Бесполое размножение при помощи зооспор с двумя жгутиками. Половой процесс – оогамия. В клеточных стенках присутствует целлюлоза.

Класс зигомицеты. Мицелий хорошо развитый, у большинства представителей класса неклеточный. Бесполое размножение преимущественно спорангиоспорами. Половой процесс – зигогамия. В клеточных стенках присутствует хитин.

Класс аскомицеты (сумчатые). Мицелий хорошо развитый, клеточный. Бесполое размножение при помощи конидий. Половой процесс – гаметангиогамия. Результатом полового процесса является образование аскоспор, которые формируются эндогенно – в сумках (асках). В клеточных стенках присутствует хитин. У дрожжей, также относимых к этому классу, содержание хитина в клеточных стенках невелико.

Класс базидиомицеты. Мицелий хорошо развитый, клеточный. Бесполое размножение при помощи конидий. Половой процесс – соматогамия. В результате полового процесса образуются базидиоспоры, которые располагаются экзогенно – на базидиях. В клеточных стенках присутствует хитин.

Класс дейтеромицеты (несовершенные грибы). Мицелий хорошо развитый, клеточный. Бесполое размножение, при помощи конидий. Половой процесс отсутствует. В клеточных стенках содержится хитин.

Первые три класса – хитридиомицеты, оомицеты и зигомицеты – условно называют низшими грибами, поскольку их мицелий не разделен на клетки, а последние три класса – аскомицеты, базидиомицеты и дейтеромицеты – высшими грибами, поскольку их мицелий имеет настоящее клеточное строение. В некоторых руководствах лишь последние четыре класса (зигомицеты, аскомицеты, базидиомицеты и дейтеромицеты) относят к настоящим грибам, поскольку они не образуют подвижных клеток (гамет или зооспор) ни в одной фазе своего жизненного цикла и основу их клеточной стенки составляет хитин; при такой классификации первые два класса (хитридиомицеты и оомицеты) относят к грибообразным.

Представители классов грибов

Класс хитридиомицеты

Грибы, относящиеся к хитридиомицетам, как правило, тесно связаны с водной средой. Большинство паразитирует на водорослях, других водных грибах, высших водных растениях и беспозвоночных животных. Некоторые паразитируют на высших наземных растениях, обитающих на влажных почвах. Значительно меньшая часть хитридиомицетов ведет сапрофитный образ жизни, поселяясь на ветвях, листьях, плодах деревьев, трупах насекомых и других животных, оказавшихся в воде. Отдельные представители класса развиваются на сброшенных во время линьки или оставшихся после гибели животных хитиновых покровах.
Вегетативное тело у многих внутриклеточных паразитов представлено голой плазменной массой, которая всей своей поверхностью впитывает питательные вещества из клетки хозяина. Более высокоорганизованные формы характеризуются зачаточным мицелием. Основа клеточной стенки хитридиомицетов – хитин (до 60%).
Бесполое размножение осуществляется зооспорами различного строения с одним жгутиком. Способы полового воспроизведения разнообразны. У некоторых видов зооспоры при определенных условиях функционируют как гаметы, у других сливаются сами особи (хологамия), у третьих – сливаются гаметы, одинаковые (изогамия) или различающиеся по размерам, а иногда и по окраске и активности движения (гетерогамия). Есть формы с оогамным половым процессом.
Многие хитридиомицеты оказывают большое влияние на развитие популяций в водоемах, вызывая массовые заболевания и гибель организмов. Некоторые хитридиомицеты известны как возбудители опасных болезней наземных растений.
К этому классу относится возбудитель «черной ножки» капустной рассады – ольпидий капустный (Olpidium brassicae). Растения заражаются в парниках, особенно при избыточной влажности почвы и загущенных посевах, в фазе семядольных или первых настоящих листьев. Стебель пораженного растения темнеет, утончается, нередко загнивает, а само растение поникает и гибнет. Гриб развивается в клетках эпиблемы и первичной коры корня.
Один из видов рода синхитриум (Synchytrium endobioticum), вызывает очень опасное заболевание – рак картофеля. При этом на клубнях пораженных растений появляются бугристые опухоли, напоминающие губку. Они разрастаются, часто превышая размеры клубня, чернеют и затем разрушаются. Потери урожая при этом могут превышать 50%. В настоящее время выведены сорта, устойчивые к этому заболеванию.

Класс оомицеты

К этому классу относятся главным образом водные грибы, обитающие на растительных остатках, трупах животных, а также паразиты водорослей, других водных грибов, беспозвоночных животных, рыб, земноводных. Некоторые живут в почве. Наиболее высокоразвитые – паразиты высших наземных растений.
Представители этого класса имеют разнообразные вегетативные тела – от одноклеточного у наиболее примитивных форм до хорошо развитого неклеточного мицелия. Бесполое размножение – зооспорами, иногда конидиями. Половой процесс оогамный. Зооспоры имеют два жгутика: один перистый, другой – гладкий. Основу клеточной стенки составляет целлюлоза; хитин отсутствует. В силу этих двух особенностей, а также преимуществено водного образа жизни оомицеты иногда называют «грибы-водоросли».
Если в сосуд с прудовой водой бросить мертвых мух, куколки муравьев, семена конопли (лучше предварительно раздавленные) или подвесить на ниточке кусочки вареного куриного яйца (белка), то через 4–6 дней вокруг субстрата разовьется белый пушок мицелия длиной 1 см и более. Так удается наблюдать грибы из семейства сапролегниевые (Saprolegniaceae).
Среди других представителей оомицетов особого внимания заслуживает картофельный гриб – фитофтора (Phytophtora infestans) – паразит ботвы и клубней картофеля, листьев и плодов томатов и других представителей семейства Пасленовые. Мицелий гриба развивается по межклетникам, а в клетки внедряются его гаустории – специализированные гифы, поглощающие питательные вещества из живых клеток. Пораженные участки быстро отмирают, и на листьях появляются бурые пятна мертвой ткани.
По краю такого пятна с нижней стороны листа бывает хорошо заметен, особенно во влажную погоду, беловатый пушок. Он представляет собой скопление конидиеносцев, которые высовываются из устьиц целыми пучками. Они несут лимоновидные многоклеточные зооспорангии, которые, отделяясь, переносятся на новый лист или с каплями дождя попадают на клубни. В каплях воды они прорастают зооспорами, которые после некоторого периода движения развивают гифы, проникающие внутрь листа или в клубень. В сухую погоду такой зооспорангий сразу прорастает в гифу, минуя стадию образования зооспор; иными словами, в этом случае он функционинует как конидия.
Разумеется, если стоит влажная погода, благоприятная для образования зооспор, растения инфицируются намного быстрее. В течение 1–2 недель ботва может погибнуть на десятках и сотнях гектаров. Массовое заражение клубней происходит в основном при выкапывании картофеля. На клубнях появляются пятна свинцово-серого цвета. При хранении недостаточно просушенных клубней в условиях повышенной влажности и температуры они начинают гнить. Присутствие паразита стимулирует амилазу клубня, и крахмал переходит в сахар, что, в свою очередь ведет к обильному развитию бактерий; тогда сухая гниль превращается в мокрую.
Любопытно, что половое размножение фитофторы наблюдается только на ее родине, в Мексике. Картофельный гриб был завезен в Европу из Южной Америки в 30-е гг. XIX в. и быстро распространился по всему земному шару. В 1845–1846 гг. отмечена первая массовая вспышка заболевания, в результате которой в ряде стран Европы погибла значительная часть урожая картофеля. Особенно пострадала Ирландия: в последовавшее пятилетие население страны сократилось на 2 млн человек, поскольку многие погибли от голода, другие были вынуждены эмигрировать, главным образом в Северную Америку. С тех пор и по настоящее время наблюдаются вспышки фитофтороза, особенно пагубные в те годы, на которые приходится влажное лето.

Класс зигомицеты

Этот класс содержит более 500 видов. Почти все представители класса ведут наземный образ жизни. Среди них есть сапрофиты, паразиты грибов, высших растений, насекомых, других животных и человека. Они имеют хорошо развитый неклеточный многоядерный мицелий, изредка многоклеточный. В клеточных стенках содержится хитин. Бесполое размножение осуществляется спорангиоспорами или конидиями. В названии класса отражен своеобразный половой процесс, свойственный этим грибам, – зигогамия, при котором сливается содержимое двух обычно многоядерных клеток, отделяющихся при этом перегородками от несущих гиф; гаметы не образуются. В результате слияния клеток развивается покоящаяся зигоспора, прорастающая затем в гифу со спорангием на конце; перед прорастанием зигоспоры происходит редукционное деление (мейоз).
Представители рода Mucor имеют неклеточный мицелий, состоящий из сильно ветвящихся бесцветных гиф, и часто образуют пушистые плесневые налеты белого или серого цвета на пищевых продуктах растительного происхождения (хлебе, варенье, плодах, овощах). Многие виды этого рода развиваются в почве, а также на навозе. Поскольку на мицелии в большом количестве развиваются заметные невооруженным глазом округлые спорангии, расположенные на специальных гифах – спорангиеносцах, грибы из рода Mucor иногда называют «головчатой плесенью».
Споры этих грибов постоянно присутствуют в воздухе, поэтому они легко заселяют пищевые продукты. Чтобы наблюдать мукор, достаточно просто поместить кусочек хлеба в условия повышенной влажности, например, в закрытую стеклянную банку, куда положить также небольшую намоченную водой тряпочку или кусок бумаги (нельзя просто наливать воду: это вызовет развитие совсем другой, анаэробной, микрофлоры).
Белый пушистый головчатый налет, который вскоре разовьется на хлебе, можно рассматривать в лупу, а также использовать для приготовления временного микропрепарата. Для этого нужно взять концом препаровальной иглы мицелий гриба, который разовьется не на кусочке хлеба, а на стекле рядом с ним. Поместив такой мицелий в каплю воды и накрыв покровным стеклом, его можно наблюдать под микроскопом. При приготовлении такого микропрепарата редко удается совсем избежать пузырьков воздуха вокруг мицелия, поскольку маслянистые гифы гриба не смачиваются водой.

На микропрепарате (рис. 3) удается наблюдать спорангиеносцы, восходящие от обильно ветвящегося неклеточного мицелия и увенчанные созревающими спорангиями белого цвета либо уже вскрывшиеся, у которых верхняя, расширенная часть спорангиеносца – колонка – покрыта массой темно-серых (дымчатых) спорангиоспор. Форма колонки различна для разных видов и служит систематическим признаком.

Рис. 3. Мукор: 1 – спорангиеносец; 2 – колонка; 3 – спорангиеспоры; 4 – спорангий; 5 – мицелий

Класс аскомицеты, или сумчатые грибы

Это один из самых обширных классов, включающий около 30 тыс. видов, разнообразных по строению и образу жизни. К этому классу относится большинство грибов, входящих в состав лишайников. Бесполое размножение осуществляется конидиями. Половой процесс – гаметангиогамия. Основной признак аскомицетов – формирование в результате полового процесса асков (сумок) – замкнутых одноклеточных структур, содержащих определенное количество (обычно 8) гаплоидных аскоспор.
У наиболее примитивных представителей класса сумки образуются открыто, поэтому их называют голосумчатыми; к таким аскомицетам относятся дрожжи. У более высокоорганизованных сумки образуются внутри плодовых тел (плодосумчатые). Различают три типа плодовых тел: клейстотеции – полностью замкнутые плодовые тела; перитеции – грушевидные плодовые тела, открытые с одного конца; апотеции – широко открытые плодовые тела, обычно блюдцевидные или чашевидные.
К сумчатым грибам с плодовыми телами – перитециями – относятся, например, мучнисторосые грибы из рода Сферотека. Мучнистая роса крыжовника (Sphaerotheca mors uvae) удобна для приготовления временных препаратов и наблюдения гриба под микроскопом. Из фиксированных в 50%-ном спирте плодов крыжовника, пораженных мучнистой росой, можно готовить такие препараты по мере необходимости (для фиксирования нужно выбирать те плоды, на которых пленка, состоящая из мицелия гриба и плодовых тел, приобрела коричневый цвет). Небольшое количество налета снимают препаровальной иглой, помещают в каплю воды на предметное стекло и накрывают покровным.
Под микроскопом легко удается увидеть густую сеть гиф гриба и образованные из них же коричневые круглые клейстотеции. В каждом клейстотеции содержится всего одна сумка (аска) с 8 аскоспорами. Если снять препарат с предметного столика микроскопа и слегка надавить на предметное стекло, удается разрушить часть клейстотециев, при этом сумки выйдут из них (рис. 4). Наблюдать вскрывшиеся клейстотеции лучше по краю фрагмента пленки, где они расположены реже.

Рис. 4. Мучнистая роса крыжовника: 1 – гифы; 2 – вскрывшийся клейстотеций; 3 – сумка с аcкоспорами

К аскомицетам с плодовыми телами-клейстотециями относятся также широко распространенные плесени из родов Penicillium и Aspergillus, охотно развивающиеся, например, на хлебе. Оговоримся, что многие виды этих родов размножаются только бесполым путем (конидиями) и поэтому в некоторых руководствах формально относятся к несовершенным грибам – дейтеромицетам, о которых будет сказано ниже.
Для приготовления микропрепаратов пенициллума и аспергиллуса можно использовать колонии разных оттенков голубого, зеленого и других цветов, развивающиеся на хлебе. Следует брать материал из периферической, еще бесцветной части колонии, где активно идет образование конидий (в окрашенной части колонии конидии уже образовались и отделились от своих конидиеносцев). На препарате можно наблюдать конидиальные спороношения гриба, по формам которых пенициллиум и аспергиллус легко отличить друг от друга (рис. 5). У пенициллума конидиеносец многоклеточный, ветвящийся, цепочки конидий образуют фигуру в виде кисти, за что этот род получил название «гриб-кистевик». У аспергиллуса конидиеносцы неклеточные, расширенные в верхней части, а цепочки конидий ассоциируются со струями воды, льющимися из лейки, почему его называют «леечный гриб».