Методы исследования радиоактивности объектов окружающей среды

В настоящее время известно много процессов самопроизвольного превращения ядер. Эти процессы называются радиоактивными, так как они протекают по законам радиоактивного распада. К такому распаду склонны нестабильные тяжелые элементы (расположенные в конце таблицы Менделеева), в ядрах которых число нейтронов значительно превышает число протонов. Таким образом, можно сказать, что радиоактивность – самопроизвольное превращение (распад) атомных ядер некоторых химических элементов (урана, тория, радия, калифорния и др.), приводящее к изменению их атомного номера и массового числа и сопровождающееся испусканием ионизирующих излучений. Такие элементы называются радиоактивными.

Радиоактивные вещества распадаются строго с определенной скоростью, характеризуемой периодом полураспада (Т½), т.е. временем, за которое распадается половина всех атомов.

Распад атомов сопровождается ионизирующим излучением, так как проходя через различные вещества, такое излучение способно вызвать ионизацию его атомов как при непосредственном соударении, так и опосредованно. Естественные радиоактивные вещества испускают три вида лучей: a-, b-, g- лучи.

aизлучение представляет собой поток положительно заряженных a-частиц (ядер атомов гелия), движущихся со скоростью около 20 000 км/с. Проникающая способность таких частиц мала: пробег в воздухе составляет 7. 8 см, в биологических тканях 20 см. Для защиты от g-излучения используют специальные радиационно-защитные материалы: тяжелые бетоны, чистый свинец, особые полимеры.

При ядерных реакциях возможно и нейтронное излучение, представляющее собой поток нейтронов и характеризующееся очень высокой проникающей способностью. Ионизация среды осуществляется заряженными частицами, возникающими при взаимодействии нейтронов с веществом. Не имея электрического заряда, нейтроны легко проникают в ядра атомов и захватываются ими. Нейтронное излучение способно превращать атомы стабильных элементов в радиоактивные вещества (наведенная радиация).

На практике чаще измеряют не свойства самого радиоактивного образца, а результат его воздействия или предполагаемый результат воздействия радиоактивного излучения. Основным количественным показателем является поглощенная доза, за единицу которой принимают грей (Гр). 1 Гр соответствует поглощению в среднем 1Дж энергии излучения массой вещества в 1 кг.

Свойство биологической ткани – реагировать на различные вида ионизирующего излучения выражается через определение эквивалентной дозы. В системе СИ за единицу эквивалентной дозы принят зиверт (Зв), внесистемная единица – бэр (биологический эквивалент рентгена). 1 бэр – это доза излучения (любого вида), действие которой на ткани любого организма эквивалентно действию 1 рентгена гамма-излучения: 1 бэр = 1 Р, 1 Зв = 100 бэр.

Общее представление о радиоактивности тех или иных объектов окружающей среды может быть получено измерением так называемой экспозиционной дозы излучения, при которой корпускулярная эмиссия в сухом атмосферном воздухе массой 1 кг производит ионы, несущие заряд каждого знака, равный одному кулону (1 Кл). Внесистемной единицей является рентген (Р). 1 Р – это такая доза рентгеновского или g-излучения, при которой в 1 см 3 сухого воздуха при температуре 0 о С и давлении 760 мм.рт.ст. образуется около 2 млрд пар ионов. На практике обычно оценивают мощность экспозиционной дозы, измеряемой в рентгенах в секунду (Р/с) или микрорентгенах в час (мкР/ч).

Радиоактивное излучение является неотъемлемым атрибутом окружающей среды. Естественный радиационный фон Земли создаётся космическим излучением и излучением природных радионуклидов (уран, торий и продукты их радиоактивного распада), естественным образом распределенных в земле, воде, воздухе, пищевых продуктах и организме человека. На протяжении биологической истории нашей планеты этот фон оставался практически неизменным, обусловливая дозу радиации, близкую 10–12 мкР/ч. Естественный фон считают безопасным для биологических объектов. В результате деятельности человека происходит изменение естественного радиационного фона и возникает техногенно измененный радиационный фон. Эти изменения вносит искусственная радиация, возникающая при испытании ядерного оружия, при нарушении функционирования радиационно опасных объектов (АЭС, исследовательских институтов соответствующего профиля и т.д.), при образовании радиоактивных отходов на предприятиях атомной энергетики.

Цель работы: углубить представления о радиоактивности различных объектов окружающей среды, оценить радиоактивность конкретного объекта, освоить метод измерения радиоактивности.

Приборы и оборудование: прибор геологоразведочный сцинтилляционный СРП-88 Н.

Порядок выполнения работы

Оценку радиоактивности проводят косвенно по интенсивности g-излучения измеряемого объекта. Объекты избираются по указанию преподавателя. С помощью прибора СРП-88Н в разных точках измеряемого объекта производят замеры в соответствии с правилами работы с приборами. Для этого необходимо произвести ряд последовательных операций:

1. Включить прибор, установив на индикаторном устройстве переключатель «Диапазон» в положение «1», затем переключатель «Порог» в положение «БАТ», при этом на цифровом табло индуцируются цифры, показывающие напряжение питания в вольтах. При величине напряжения от 3,5 до 6,5 В элементы питания пригодны к работе.

2. Установить переключатель «Порог» в положение «0» и приблизить ствол блока детектирования к месту расположения контрольного источника на индикаторном устройстве. При этом стрелка индикатора должна отклониться, на табло должны индуцироваться показания и прослушиваться щелчки звукового сигнализатора, частота которых увеличивается при приближении ствола к источнику.

3. Установить переключатель «Порог» в положение «ИЗМ», а переключатель «Диапазон» – в положение «0,3», через 1 мин после включения прибора приставить ствол вплотную к контрольному источнику, совместив защитный резиновый колпачок с окружностью на пульте. Зафиксировать не менее трех показаний цифрового табло и вычислить среднеарифметическое значение Ризм.

Отвести блок детектирования от места расположения контрольного источника на расстояние > 0,5 м и зафиксировать не менее трех показаний цифрового табло, вычислить среднеарифметическое значение Рф.

Определить действительное значение показания Рд, с -1 от контрольного источника по формуле

где К – коэффициент, характеризующий активность источника во времени (дается преподавателем).

Если действительное значение показаний прибора Рд соответствует значению 1670 ± 167, прибор работоспособен и готов к работе.

4. При работе с прибором СРП-88Н в режиме поиска изменение интенсивности потока g-излучения необходимо отслеживать по стрелочному индикатору, для чего переключатель «Диапазон» установить в положение «0,1» или «0,3», что соответствует экспозиции 10 с.

В положении «ИЗМ» переключателя «Порог» звуковая сигнализация отключена, в положении «0» осуществляется мониторный режим, т.е. частота сигналов соответствует интенсивности излучения.

5. При измерении интенсивности излучения от радиоактивного источника для представления информации в единицах мощности экспозиционной дозы, мкР/ч, достаточно показания цифрового табло разделить на значение чувствительности прибора и умножить на 1000. Значение чувствитель­ности данного прибора равно 3670 с –1 . м 2 . мг –1 .

100. Методы и приборы для определения радиоактивности объектов окружающей среды. Критерии оценки степени радиоактивности.

Для регистрации излучений применяют особые устройства – детекторы, в которых под воздействием излучения происходит ионизация вещества детектора и образуются заряженные частицы, которые создают электрическое поле, по напряжению электрического поля определяют энергию излучения, а по числу импульсов, прошедших через детектор, число распадов (импульсов). Таким образом, подсчитав количество электрических сигналов соответствующей амплитуды, можно узнать активность того или иного радионуклида, содержащегося в образце. Приборы, в которых используется такой принцип измерения радиоактивности, называются РАДИОМЕТРАМИ.

Дозиметрия — измерение дозы внешнего облучения или мощности дозы в единицу времени; осуществляется с помощью стационарных или индивидуальных дозиметров – приборов для измерения дозы или мощности дозы облучения. Работа дозиметров основана на эффектах, возникающих в воздухе или другой среде при прохождении через нее ионизирующих излучений. В отличие от корпускулярных излучений -кванты не замедляются в среде, их энергия или поглощается, или рассеивается. При поглощении -квантов возникают следующие эффекты: ионизация молекул среды, фотоэффект (при котором атомы поглощают -кванты и испускают электроны) и образование из -кванта электронно-позитронной пары. При устройстве дозиметров используются методы: ионизационный, сцинтилляционный, термолюминесцентный, фотографический.

Группа критических органов

ПДД для лиц категории А, бэр (мЗв)

ПД для лиц категории Б, бэр (мЗв)

1-ая группа: внутренние половые органы, кроветворные органы и все тело. 2-ая группа: органы грудной и брюшной полости, а также щитовидная железа и хрусталик глаза. 3-ья группа: костная ткань, кожный покров, кисти, предплечья, стопы и лодыжки.

101. Принципы и организация дезактивации объектов окружающей среды при загрязнении их радиоактивными веществами.

102. Радиационная безопасность в медицинской радиологии.

К техническим мероприятиям радиологической безопасности относятся: создание передвижных или стационарных защитных ограждений, автоматизация и механизация технологических процессов, очистка воздуха от радиоактивных веществ на выбросе и т.д. Медико-санитарные мероприятия включают установление санитарно-защитных зон, организацию принудительного санитарно-пропускного режима, установление перечня средств индивидуальной и групповой защиты, осуществление контроля за состоянием здоровья персонала с учетом характера радиационного воздействия. К организационным мероприятиям относится, в первую очередь, обеспечение при работе в условиях повышенного уровня ионизирующих излучений режима труда, исключающего облучение персонала выше допустимых пределов.

Профилактика радиационных поражений проводится с помощью:

Приказ МЗ «О проведении предварительных при поступлении на работу и периодических медицинских осмотров»

Фармакохимическая защита – радиопротекторы

Биологическая защита – адаптогены

Лечебно-профилактическое питание – рацион-1

Регламентированы «Нормами радиационной безопасности НРБ-99»

соблюдение принципов радиационной безопасности

регламентация основных дозовых пределов

определение действий, связанных с планируемым повышенным облучением при ликвидации радиационных аварий

определение требований к защите от облучения природными источниками

определение требований к ограничению облучения населения

ограничение медицинского облучения населения

защита количеством (снижение мощности ИИИ)

защита временем (квалификация персонала)

защита расстоянием (дистанционное управление)

применение факторов коллективной и индивидуальной защиты:

противогазы, фартуки, очки, бахилы, перчатки

Исследовательская работа Изучение радиоактивного фона местности

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся

Сертификат и скидка на обучение каждому участнику

исследовательских работ среди учащихся общего и дополнительного

образования по эколого-этнографическому проекту

«Дерево Земли, на которой я живу»

Изучение радиоактивного фона местности

Автор работы: Совестнов Роман,

Руководитель работы: учитель химии

Щеголева Татьяна Викторовна

1.2 Радиационное загрязнение среды……………………………….6-8

1.3 Радон — основной источник радиоактивного облучения……. 8-10

1.4 Воздействие радиации на здоровье человека………………….10-11

1.5 Система мер слежения за состоянием окружающей среды…..12-13

2.1 Изучение радиации данной местности:………………………14-19

— стационарные приборы для обнаружения радиации;

— результаты замеров радиационного фона на метеостанции;

— устная беседа со специалистами;

2.2 Анализ сведений о загрязнении окружающей среды…………20

Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем. В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиоактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду, они оказывают воздействия на живые организмы, в чем и заключается их опасность.

Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о выгодах, которые приносят производства, основным или побочным продуктом которых являются радионуклиды, и потерях, связанных с отказом от этих производств, о реальных механизмах действия радиации, последствиях и существующих мерах защиты.

Цель работы: изучить наличие радиационного фона данной местности, определить меры защиты живых организмов.

Объект: окружающая среда города Инсара.

Предмет: радиационное воздействие.

Воздействие радиации на человека называют облучением. Основу этого воздействия составляет передача энергии радиации клеткам организма.
Облучение может вызвать нарушения обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь.

Реальный ущерб здоровью людей приносят выбросы предприятий химической и тяжелой промышленности.

Науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.

Изучить литературу по проблемам радиационного загрязнения окружающей среды.

Выявить ПДК радиоактивных веществ, их наличие в местности

Определить воздействие радиационного загрязнения на здоровье человека.

Проанализировать результаты и предложить пути решения проблемы загрязнения окружающей среды.

Если мы будем иметь чёткое представление о масштабах радиационного загрязнения окружающей среды, то сможем дать правильную оценку радиационной опасности.

— анализ литературы для выяснения концептуальных основ работы.

— изучение радиации на местности, радиационный замер на метеостанции;

— анализ данных о загрязнении окружающей среды.

Атомной радиацией, или ионизирующим излучением 1 — называется излучение, которое создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков.

При прохождении этих частиц или квантов через вещество атомы и молекулы, из которых оно состоит, возбуждаются или даже ионизируются. Возбуждение атома – это такое явление, при котором атомные электроны переходят в состояния с повышенной энергией, оставаясь, тем не менее, «привязанными» к ядру электростатическими – кулоновскими – силами. Возбужденное состояние атома можно – очень грубо, конечно, – уподобить искаженной Солнечной системе, в которой Земля в результате какой-то ужасной встряски вдруг перешла на орбиту Марса.

Атомы и молекулы при возбуждении как бы распухают, и если они входят в состав какого-нибудь биологически важного соединения в живом организме, то функции этого соединения могут оказаться нарушенными. Если же проходящая через биологическую ткань ядерная частица или квант вызывают не возбуждение, а ионизацию атомов, то соответствующая живая клетка оказывается дефектной. Ионизация – это такое физическое явление, при котором электроны, входящие в состав атомов или молекул среды, отрываются от них и начинают странствовать по всему веществу. Выбиваемые при ионизации электроны, если они обладают достаточной энергией, тоже могут ионизировать и возбуждать молекулы вещества.

Любое изменение в облучаемом объекте, вызванное ионизирующим излучением, называется радиационно-индуцированным эффектом. В принципе радиационно-индуцированные эффекты могут быть как вредными, так и полезными. Крайний пример вредных последствий облучения – это лучевое поражение организма в результате чрезмерных доз ионизирующей радиации. Вместе с тем ионизирующие излучения с успехом применяются для диагностики и лечения некоторых заболеваний.

Понятно, что как для целенаправленного использования ионизирующих излучений, так и для выработки защитных мер против их вредного воздействия необходимо знать, как в живом организме возникают радиационно-индуцированные эффекты. Эта задача не из легких, и сейчас над ней работают многие коллективы ученых самых разных специальностей – физики, радиобиологи, генетики, биохимики. В чем трудность изучения радиационного воздействия на живой организм? Дело в том, что проблема взаимодействия ядерных излучений с живым веществом имеет как бы несколько этажей сложности.

Радиационное загрязнение среды.

Особое место в загрязнении окружающей среды занимает радиоактивное загрязнение. В наше время радиация стала вездесущей, всепроникающей и в каком-то смысле бесконечной. Поражающим действием обладают не только высокие дозы радиации, но, как показали независимые исследования профессора Гофмана (1994), малые дозы (до 20 Гр) также способны вызывать различные заболевания у человека, в том числе и рак. Источников радиоактивного загрязнения много, но главные из них добыча и обогащение урана.

Действие загрязнителей на живые организмы ощущается на разных уровнях. Повышенные фоны загрязнения могут действовать на отдельные организмы, их органы и ткани, на клетки и отдельные внутриклеточные структуры, а также на более высокие уровни организации живых систем – популяции и сообщества.

Общебиологическое действие радиации в зависимости от дозы облучения может выражаться в стимуляции, угнетении и летальном эффекте. Ионизирующие излучения могут вызывать различные уродства на ранних стадиях развития организма. В стадии гаметогенеза – нарушения этого процесса, ведущие к стерильности. Радиация также действует на метаболизм растений и животных, затрагивая самые различные функции организмов. Так, например, при изучении реакции растений житняка гребенчатого (Agropyron cristatum) на различные дозы облучения нами установлено более высокое, чем в контрольных растениях, содержание сахаров, аскорбиновой кислоты, хлорофиллов “а” и “в”. Действуя на физическую и химическую структуру хромосом, радиация вызывает наследственные изменения – мутации. Многочисленные исследования показали, что эффекты радиоактивного облучения в значительной степени зависят от радиочувствительности организмов, от вида радиации и от режима облучения, т.е. от распределения дозы во времени или от ее мощности. Е.И.Преображенская (1971) изучила радиочувствительность у 700 видов и сортов растений и разделила их по этому свойству на три больших группы: радиочувствительные, выдерживающие дозы облучения от 150 до 250 Гр, среднечувствительные – 250–1000 Гр и радиоустойчивые – более 1000 Гр. По современным представлениям радиоустойчивость-радиочувствительность определяется следующими основными факторами: а) объем и структурная организация генома; б) активность природных защитных и сенсибилизирующих систем; в) уровень активности ферментов репарации; г) гетерогенность клеток и возможность репопуляции (Кузин, Каушанский, 1981).

Наиболее важной особенностью всех загрязнителей окружающей среды является их способность вызывать наследственные изменения – мутации.

Краткий экскурс в проблему загрязнителей окружающей среды приводит нас к убеждению в том, что они являются не только факторами, ингибирующими жизнеспособность живых организмов, но и мощными факторами процесса формообразования. Они могут изменять направление и темпы формирования естественных популяций и культигенов, вплоть до биоценозов. К настоящему времени накопилось достаточно данных, свидетельствующих о том, что виды и популяции включают в свою структуру, как устойчивые особи, так и восприимчивые к различным загрязняющим факторам. При этом наблюдается значительное варьирование по этому признаку.

На сегодняшний день становится актуальной задача изучения генетики признаков устойчивости к загрязняющим факторам среды, поиска и сохранения геноисточников устойчивости и создания сортов, резистентных к высоким концентрациям “загрязнителей”, а также сортов, способных абсорбировать в больших количествах токсические вещества.

Радон — основной источник радиоактивного облучения.

Радон 2 — элемент главной подгруппы восьмой группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 86. Обозначается символом Rn (Radon). Простое вещество радон (CAS-номер: 10043-92-2) в нормальных условиях — бесцветный инертный газ; радиоактивен, может представлять опасность для здоровья и жизни. При комнатной температуре является одним из самых тяжелых газов. Наиболее стабильный изотоп ( 222 Rn) имеет период полураспада 3,8 суток. Так как радон довольно тяжел (в 7,5 раз тяжелее воздуха), он «обитает» в толщах земных пород, и, конечно, выделяется понемногу в атмосферу. Но не сам по себе, а в смеси с увлекающими его потоками других, более легких газов — водорода, углекислого газа, метана, азота и других. Все они порождаются глубинными процессами. Интересен тот факт, что радон, являясь инертным газом, не образует аэрозолей, т.е. не присоединяется к пылинкам, тяжёлым ионам и т.д. Из-за химической инертности и большого периода полураспада он может мигрировать по трещинам, порам почвы и пород на большие расстояния, причём довольно длительно (около 10 дней). Радон также содержится в некоторых минеральных водах, которые так и называются радоновыми.
Лишь недавно ученые выяснили, что наибольший вклад в радиоактивное облучение человека вносит именно радон. Он ответствен за 3/4 годовой дозы облучения, получаемой людьми от земных источников радиации и примерно за половину этой дозы от всех природных источников. Установлено, что основная часть облучения происходит от дочерних продуктов распада радона — изотопов свинца, висмута и полония.
Продукты распада радона попадают в легкие человека вместе с воздухом и задерживаются в них. Распадаясь, выделяют альфа-частицы, поражающие клетки эпителия. Распад ядер радона в легочной ткани вызывает микроожоги, а повышенная концентрация газа в воздухе может привести к раку. Также альфа-частицы вызывают повреждения в хромосомах клеток костного мозга человека, что увеличивает вероятность развития лейкозов.
К сожалению, наиболее уязвимы для радона самые важные клетки — половые, кроветворные и иммунные. Частицы ионизирующей радиации повреждают наследственный код и, притаившись, никак себя не проявляют, до тех пор, пока «больной» клетке не настанет время делиться или создавать новый организм — ребенка. Тогда речь может идти о мутации клеток, приводящей к сбоям в жизнедеятельности человека.
В дом радон может попасть разными путями: из недр Земли; из стен и фундамента зданий, т.к. строительные материалы (цемент, щебень, кирпич, шлакоблоки) в разной степени, в зависимости от качества, содержат дозу радиоактивных элементов; вместе с водопроводной водой и природным газом. Так как этот газ тяжелее воздуха, он оседает и концентрируется в нижних этажах и подвалах.
Самый значимый путь накопления радона в помещениях связан с выделением радона из почвы, на которой стоит здание. Большую опасность представляет поступление радона с водяными парами при пользовании душем, ванной, парной. Он содержится и в природном газе, и поэтому на кухне необходимо устанавливать вытяжку, чтобы предотвратить накапливание и распространение радона.

В 1995 году в нашей стране принят федеральный закон «О радиационной безопасности населения» и действуют специальные нормы радиационной безопасности. По нему следует, что при проектировании здания среднегодовая активность изотопов радона в воздухе не должна превышать 100 бк/куб.м (беккерелей на метр кубический). В жилых квартирах не более 200 бк/куб.м, иначе встает вопрос о проведении защитных мероприятий, а если значение достигает 400 бк – здание должно быть снесено или перепрофилировано.
Сейчас многие люди приобретают личные дозиметры, чтобы измерить общий фон радиации в квартире. Но для измерения уровня радона он бесполезен, тут необходимо вызывать специалистов с радиометром радона. Если вы хотите самостоятельно обезопасить свое жилище от вредного газа, вам следует заделать щели в стенах и полах, поклеить обои, загерметизировать подвальные помещения, чаще проветривать комнаты.
Но в природе нет ничего лишнего и помимо важных исследований в области химии и физики, радон используется во многих сферах человеческой жизни. Его используют в медицине для приготовления «радоновых ванн», в сельском хозяйстве для активации кормов домашних животных, в металлургии в качестве индикатора для определения скорости газовых потоков в доменных печах и газопроводах. Геологи с его помощью находят залежи радиоактивных элементов. Сейсмологи, анализируя выход радона из почв, могут спрогнозировать сильные землетрясения и извержения вулканов. Поэтому при успешных и своевременных мерах защиты даже такую «химеру» можно заставить служить человечеству.

1.5 Воздействие радиации на здоровье человека.

Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей.

Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, и зачастую для развития болезни требуются годы или даже десятилетия. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм: -частицы наиболее опасны, однако для -излучения даже лист бумаги является непреодолимой преградой; -излучение способно проходить в ткани организма на глубину один — два сантиметра; наиболее безобидное — излучение характеризуется наибольшей проникающей способностью: его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца.

Также различается чувствительность отдельных органов к радиоактивному излучению. Поэтому, чтобы получить наиболее достоверную информацию о степени риска, необходимо учитывать соответствующие коэффициенты чувствительности тканей при расчете эквивалентной дозы облучения (приложение 1).

Вероятность повреждения тканей зависит от суммарной дозы и от величины дозировки, так как благодаря репарационным способностям большинство органов имеют возможность восстановиться после серии мелких доз.

В таблице приведены крайние значения допустимых доз радиации 3 : Допустимая доза — суммарная доза,