Темноокрашенные высокомолекулярные азотсодержащие кислоты почвы называют

Фульвокислоты — высокомолекулярные азотсодержащие органические кислоты

Фулъвокислоты (ФК) — группа гумусовых кислот, остающаяся в растворе после осаждения гуминовых кислот. Они так же, как и ГК, представляют собой высокомолекулярные азотсодержащие органические кислоты. От гуминовых кислот отличаются светлой окраской, более низким содержанием углерода, растворимостью в кислотах, большей гидрофильностью и способностью к кислотному гидролизу. Плотность фульвокислот по имеющимся немногочисленным данным равна 1,43—1,61 г/см3.

Элементный состав фульвокислот (в % по массе) составляет: С — 41—46, Н — 4—5, N — 3—4. Содержание кислорода зависит от количества углерода; его больше, чем в ГК. Фульвокислоты различных типов имеют большое сходство. Элементный состав фуль- вакислот в процентах (табл. 20) показывает повышенное содержание углерода в дерново-подзолистых, серых лесных почвах и красноземах, пониженное — в черноземах, сероземах и аллювиальных луговых почвах. В почвах с пониженным содержанием углерода отмечены более узкое отношение C:N и большая степень окисленности.

Таблица 20. Средний элементный состав фульвокислот (Д. С. Орлов, 1974; Л. А. Гришина, 1982)

Почвы Атомные проценты Атомные соотношения Степень окисленности, со

ные 33,8 39,1 24,9 2,2 1.2 15,0 + 0,30

Болотно-тундровые 33,4 39,5 24,6 2,5 1,2 13,0 + 0,30

подзолистые 33,4 39,3 25,3 2,0 1,18 16,6 + 0,34

Серые лесные 31,9 40,9 25,3 1,9 1,28 17,0 + 0,32

Черноземы, каштановые 30,9 40,6 26,3 2,2 1,31 14,3 + 0,34

Луговые аллювиальные 31,9 41,2 24,4 2,5 1,27 12,8 + 0,30

Красноземы 36,6 33,4 27,9 2,1 0,91 17,6 + 0,65

Состав фульвокислот меняется по профилю почв. В дерново- подзолистых почвах в более глубокие горизонты мигрируют менее обуглероженные и наименее окисленные фракции. В профиле чернозема и серозема элементый состав фульвокислот более однороден.

Строение молекулы ФК имеет принципиально однотипную природу с ГК. В их составе также найдены ароматические и гетероциклические кольца, аминокислотные, углеводные и углеводородные компоненты. Но в отличие от ГК в молекуле ФК доминируют алифатические структуры, аминокислотные и углеводные компоненты. Выход бензолполикарбоновых кислот из ароматического ядра ФК в 2 раза меньше, чем у ГК, а гидролизуемая часть молекулы ФК значительно больше, чем у ГК. Это относится и к азотсодержащим компонентам. Если у ГК их гидролизуется 40—60%, то у ФК — 70—75% (преимущественно аминокислотные и пептидные группировки). В молекуле ФК аминокислотные и аммонийные формы азота составляют до 70% всего азота.

Лучшая выраженность периферических структур в молекуле ФК обусловливает большую их гидрофильность по сравнению с ГК.

Фульвокислоты имеют те же функциональные группы, что и ГК. Реактивную способность ФК обусловливают кислые функциональные группы, карбоксильные и фенолгидроксильные, водород которых может диссоциировать и участвовать в реакциях обмена. Емкость поглощения ФК, обусловленная этими функциональными группами, больше, чем ГК, и составляет 800— 1250 мг-экв/100 г ФК. В состав фульвокислот входят также карбонильные, метоксильные, хинонные группы и спиртовые гидроксилы.

Гумусовым кислотам свойственна гетерогенность и полидисперсность. Как гуминовые кислоты, так и фульвокислоты любого типа почв можно разделить на ряд фракций различной молекулярной массы, элементного и компонентного состава, но сохраняющих принцип строения и функциональные группы гумусовых кислот.

Наряду с ГК и ФК в групповом составе гумуса выделяют негидролизуемый остаток, ранее называвшийся гумином. Современные исследования показали, что гумин представляет собой совокупность гуминовых и фульвокислот, прочно связанных с минеральной частью почвы, а также трудноразлагаемых компонентов остатков растений: целлюлозы, лигнина, углистых частиц.

Вопрос 22. Гумус и его состав.

Гумусом называют сложный динамический комплекс органических соединений, образующихся при разложении и гумификации органических остатков. Содержание гумуса в почвах определяется условиями и характером почвообразовательного процесса; оно колеблется в верхних горизонтах от 1—2 до 12—15%, резко или постепенно уменьшаясь с глубиной.

В торфяных горизонтах и лесных подстилках общее количество органических веществ может достигать нескольких десятков процентов, но они образуют не гумус, а массу торфа или полуразложившиеся растительные остатки подстилки. Количество и состав гумуса в почвах динамичны вследствие постоянного поступления в них органических остатков и непрерывности процессов их разложения и гумификации.

В состав гумуса входят 3 группы органических соединений:

1. вещества органических остатков;

2. промежуточные продукты их трансформации;

Гумусовые вещества представляют собой систему высокомолекулярных азотсодержащих органических соединений циклического строения и кислотной природы, которая предопределяет их взаимодействие с минеральной частью почвы и возможность прочного закрепления в ней.

Характерная особенность системы гумусовых веществ — ее гетерогенность, т. е. наличие в ней различных по стадии гумификации компонентов. Следствием гетерогенности являются варьирование ряда свойств и возможность расчленения системы на ряд фракций с относительно однородным типом строения, но различающихся между собой по химическому составу, размеру частиц, степени подвижности и роли в почвообразовании.

Принято различать две основные группы гумусовых кислот: группу темноокрашенных гуминовых кислот, накапливающихся на месте своего образования, и группу фульвокислот, окрашенную в желтый или бурый цвет, более подвижную и относительно легко передвигающуюся по профилю почвы, выделяют еще гумины — комплекс гуминовых кислот и фульвокислот, очень прочно связанный с минеральной частью почвы и не выделяющийся из нее при обычных способах экстрагирования гумусовых кислот.

Читайте также: Черная смородина не растет в кислой почве

Гуминовые кислоты —высокомолекулярные азотсодержащие органические кислоты циклического строения. Они хорошо растворяются в слабых растворах едких и углекислых щелочей, пирофосфата натрия, щавелевокислого натрия, фтористого натрия и аммиака с образованием растворимых солей, называемых гуматами.

В зависимости от концентрации и типа почвы растворы гуматов имеют вишнево-коричневую или черную окраску.

Гуминовые кислоты растворяются также в некоторых органических растворителях — диметилформамиде, натриевой соли этилендиамин-тетрауксусной кислоты, пиридине, диметилсульфоксиде, образуя ряд растворимых производных.

Из растворов гуминовые кислоты легко осаждаются водородом минеральных кислот, а с катионами двух- и трехвалентных металлов образуют нерастворимые в воде соли. Препараты гуминовых кислот, выделенные из почвы, окрашены в коричневый или черный цвет. Гуминовые кислоты очень слабо растворяются в воде и не растворяются в минеральных кислотах. Гуминовые кислоты состоят из углерода, водорода, кислорода и азота. Их элементный состав колеблется в некоторых относительно узких пределах: С от 52 до 62%, Н от 2,8 до 5,8, О от 31 до 39, N от 1,7 до 5%.

Содержание этих элементов в гуминовых кислотах зависит от типа почвы, химического состава разлагающихся остатков, условий гумификации. Наиболее обуглерожены гуминовые кислоты черноземов. Сельскохозяйственное использование почвы под пашню мало изменяет элементный состав этих кислот.

Данные спектрографических, химических, хроматографических и рентгенографических исследований свидетельствуют о том, что молекула гуминовых кислот имеет сложное строение.

Очень неоднородны формы азота в гуминовых кислотах. Они представлены аминными, аминокислотными и азотсодержащими гетероциклическими группировками.

Характерной особенностью гуминовых кислот является их гетерогенность по величине молекул и составу. Любой препарат гуминовых кислот легко расчленяется на ряд фракций, различных по молекулярной массе и с несколько различным элементным составом. Молекулярная масса молекул гуминовых кислот колеблется от 4000—6000 до 50 000—100 000 при использовании метода гельфильтрации.

Гуминовые кислоты не имеют кристаллической структуры, но, как показывают электронографические исследования и рентгеноструктурный анализ, их молекула характеризуется упорядоченным сетчатым строением.

Основная масса гуминовых кислот в любой почве с рН более 5 находится в виде нерастворимых в воде органо-минеральных производных, а в почвах с кислой реакцией (рН менее 5) — в форме дегидратированных гелей и частично растворяется при действии щелочных растворов, образуя молекулярные и коллоидные растворы.

Фульвокислоты — высокомолекулярные азотсодержащие органические кислоты. Они растворимы в воде, кислотах, слабых растворах едких и углекислых щелочей, пирофосфата натрия и водном растворе аммиака с образованием растворимых солей — фульватов. Растворяются они также во многих органических растворителях. Выделенные из почвы препараты фульвокислот окрашены в светло-бурый цвет, а растворы их в зависимости от концентрации имеют окраску от соломенно-желтой до оранжевой. Фульвокислоты состоят из углерода, водорода, кислорода и азота, но меньше, чем гуминовые кислоты, содержат углерода и больше кислорода. Колебания элементного состава в них таковы: С от 40 до 52%, Н от 4 до 6, О от 42 до 52, N от 2 до 6%. Фульвокислоты благодаря сильнокислой реакции и хорошей растворимости в воде энергично разрушают минеральную часть почвы.

Органическое вещество почвы

Органическое вещество почвыэто совокупность всех органических веществ, находящихся в форме гумуса и остатков животных и растений, т.е. важная составная часть почвы, представляющая сложный химический комплекс органических веществ биогенного происхождения, разделяемых на две группы:

Гумусовые, или перегнойные, вещества специфической природы.

Гумусовые вещества

Гумус — часть органического вещества почвы, представленная совокупностью специфических и неспецифических органических веществ почвы за исключением соединений, входящих в состав живых организмов и их остатков. Гумус представляет собой высокомолекулярные азотсодержащие соединения специфической природы. Гумус (перегной) возникает в результате биохимических процессов разложения растительных остатков и в силу этого имеет весьма сложное строение. Гумусовые вещества представляют собой особую систему азотсодержащих органических соединений циклического строения и кислотной природы.

Количество гумуса в почве бывает различным и зависит от многих факторов, особенно от типа почвы, природно-климатических условий, специализации севооборота, характера и интенсивности земледелия (табл. 3.3). Больше всего гумуса в верхних слоях почвы, вниз по профилю содержание органических веществ, в том числе и гумуса, снижается.

При рациональном применении органических и минеральных удобрений в севооборотах с многолетними бобово-злаковыми травами, как правило, развиваются полезные микробиологические процессы и содержание гумуса в почве возрастает, качество его улучшается. Если удобрения не применяются, содержание его снижается, что подтверждают исследования во всех зонах нашей страны.

При оптимальных биологических процессах количество гумуса в почве со временем увеличивается. Если систематически вносят органические удобрения и соблюдают научные принципы ведения земледелия, скорость накопления гумуса возрастает еще больше. Если же нет — растительные остатки, ежегодно поступающие в почву, постепенно разлагаются, большей частью минерализуются и поэтому не накапливаются.

Читайте также: Индикаторы влажности почвы ком растений

3.3. Содержание гумуса в основных типах почв (по И. В. Тюрину)

Содержание гумуса в почве — важный показатель ее потенциального плодородия, активности в ней всех биологических процессов. На долю гумуса приходится 85-90% от общего количества органического вещества почвы. Он состоит из двух основных групп: 1) гуминовые кислоты; 2) фульвокислоты. Выделены также гумины.

Гуминовые кислоты — группа темноокрашенных гумусовых кислот, растворимых в щелочах и нерастворимых в кислотах. Это — высокомолекулярные азотсодержащие органические кислоты циклического строения, хорошо растворяющиеся в слабых растворах едких щелочей, пирофосфата натрия, щавелевокислого натрия, фтористого натрия и аммиака с образованием растворимых солей — гуматов. В зависимости от концентрации и типа почвы растворы гуматов имеют вишнево-коричневую или черную окраску. Гуминовые кислоты состоят из углерода, водорода, кислорода и азота. Их состав колеблется в относительно узких пределах: С — 52-62%, Н — 2,8-5,8, О — 31-39, N — 1,7-5%. Содержание этих элементов в гуминовых кислотах зависит от типа почвы, химического состава разлагающихся остатков, условий гумификации. Больше всего углерода в гуминовых кислотах черноземов. Сельскохозяйственное производство мало изменяет элементарный состав этих кислот.

Выделенные из почвы препараты гуминовых кислот содержат помимо названных элементов и некоторое количество зольных (Р, S, Al, Fe, Si); в зависимости от степени очистки препарата их количество колеблется от 1 до 10%.

Наличие в гуминовых кислотах функциональных групп (3-6 фенольных гидроксилов (-ОН), 3-4 карбоксильных (-СООН), метоксильных (-О-СН3) и карбонильных (-С=О) групп) определяет свойства гуминовых кислот и характер взаимодействия их с почвой. Например, карбоксильные группы в гуминовой кислоте определяют ее кислотные свойства и обусловливают участие в процессах обменного поглощения катионов. Водород карбоксильных групп может замещаться различными катионами, в результате образуются соли — гуматы (Са, К, Mg, NH4 и т.д.).

Фульвокислоты — это группа гумусовых кислот, легко растворимых в воде, щелочах и кислотах; являются высокомолекулярными азотсодержащими органическими кислотами, состоящими из углерода, водорода, кислорода и азота. Но они, в отличие от гуминовых кислот, содержат меньше углерода и больше кислорода. Элементный состав их примерно таков: С — от 40 до 52%, Н — от 4 до 6, О — от 42 до 52, N — от 2 до 6%. Фульвокислоты окрашены в желтый или бурый цвет. Они более подвижны и сравнительно легко передвигаются по профилю почвы.

Фульвокислоты, обладая сильной кислой реакцией и хорошей растворимостью в воде, довольно хорошо разрушают минеральную часть почвы. Вместе с тем следует отметить, что разрушающее действие фульвокислоты на почву, ее минеральную часть, во многом зависит от количества гуминовых кислот в данной почве: чем меньше в ней гуминовых кислот, тем сильнее действие фульвокислот.

Как и гуминовые кислоты, они имеют функциональные группы, способные к обменному поглощению катионов, образуют растворимые соли кальция, магния и др. (фульваты).

Фульвокислоты более подвижны, азотные соединения в них связаны менее прочно, поэтому легче подвергаются кислотному гидролизу, чем азотные соединения гуминовых кислот. В гуминовых кислотах содержится 15-30%, а в фульвокислотах — 20-40% азота почвы.

Гумины — комплекс гуминовых и фульвокислот (по природе ближе к гуминовым кислотам), отличающийся от последних тем, что более прочно связан с минеральной частью почвы, более устойчив к разложению микроорганизмами; нерастворим в кислотах, щелочах и органических растворителях. Азот гуминов составляет 20-30% общего азота почвы.

Различные типы почв отличаются не только по общему содержанию гумуса, но и по количеству и соотношению гуминовых кислот и фульвокислот. Например, в дерново-подзолистых почвах это соотношение 0,4-0,6, а в черноземах — 1,0-1,5 и более. Эти различия в значительной степени обусловливают более высокую подвижность органического вещества, а следовательно, и азота в дерново-подзолистых почвах по сравнению с черноземами.

Гумусовые вещества могут находиться в почве в виде гуматов кальция, магния, натрия; в виде гуматов и смешанных солей с гидроокисью алюминия и железа или комплексных органоминеральных соединений с алюминием, железом, фосфором и кремнием. Они способны поглощаться глинистыми минералами. Особенно прочна связь гумусовых веществ с минералами типа монтмориллонита; с каолинитом или полевыми шпатами связь менее прочная. Образование различных органоминеральных соединений в почве (комплекс гумусовых веществ с минеральной частью) ведет к закреплению гумуса в почве. Гумус играет важнейшую роль в создании почвенного плодородия и в питании растений.

Органическое вещество является источником элементов питания для растений. В нем содержатся 98-99% азота, 30-40 — фосфора, 90% серы от общего содержания их в почве.

Гуминовые кислоты, фульвокислоты и другие, а также углекислота, образующаяся при разложении органических веществ, постепенно разрушают силикаты и алюмосиликаты, растворяют карбонаты кальция и магния, фосфаты и другие соли, переводя эти элементы питания в доступную для растений форму.

Читайте также: Социально гендерная почва что это такое

Органические вещества являются источником пищи для микроорганизмов. При их разложении азот, фосфор, сера переходят в легкоусвояемые минеральные соединения.

Многие органические вещества — гуминовые кислоты в высокодисперсном состоянии, органические кислоты (уксусная, пропионовая, янтарная и др.), а также ферменты, антибиотики, витамины, поступающие в растения в микроколичествах, — стимулируют иногда их рост в условиях водной и песчаной культур.

В почве постоянно происходят процессы образования и разрушения гумуса. Гумус, хотя и устойчив к микробиологическому разложению, постепенно минерализуется. В зависимости от того, какой процесс преобладает, содержание гумуса в почве увеличивается или уменьшается. В пахотном слое дерново-подзолистых почв органического вещества ежегодно минерализуется 6-7, а в черноземных почвах — около 10 ц/га, что составляет соответственно около 1 и 0,4-0,5%. Органические и минеральные удобрения, запашка растительных остатков повышают содержание гумуса и азота в почве.

Органическое вещество почвы образуется под влиянием жизнедеятельности растений, микроорганизмов и почвенной фауны. На процесс разложения органического вещества оказывают влияние воздух, влага, химический состав растительных остатков. При обильном притоке воздуха и оптимальной влажности совершается быстрый аэробный процесс разложения. При недостатке воздуха и избытке влаги в почве создаются условия для анаэробного микробиологического процесса разложения. Лучшие условия для экономного разложения органических веществ создаются в структурных, рыхлых, окультуренных почвах, в которых соотношение между аэробным и анаэробным микробиологическими процессами разложения органических веществ (в том числе и гумуса) бывают оптимальными.

На поверхности структурных агрегатов (комочков) развивается аэробный (быстрый) процесс разложения, а внутри структурных комочков, куда воздух из-за насыщения капилляров водой проникает с большим трудом, — анаэробный (медленный) процесс разложения. При таком одновременном разложении органических веществ растения лучше всего обеспечены пищей, водой и воздухом, наиболее экономно расходуется плодородие почвы, потерь водорастворимых питательных веществ в грунтовые и речные воды не происходит. Кроме условий аэрации на полноту и характер разложения органического вещества влияют и другие факторы (температура, реакция почвы, наличие органического вещества и необходимых для микроорганизмов элементов пищи — фосфора, азота и др.).

Простые органические вещества (сахар, крахмал и др.) разлагаются быстрее, чем углеводы сложного происхождения (целюлоза, гемицеллюлоза). Белки растительного происхождения также разлагаются быстро.

Устойчивы к разложению микроорганизмами смолы, воски. Наиболее устойчив лигнин. При его соединении с микробным белком и другими азотистыми органическими веществами образуется темноокрашенное сложное комплексное вещество, являющееся основным ядром гумуса.

В результате жизнедеятельности микроорганизмов образуются вещества вторичного происхождения, из которых состоят тела самих микроорганизмов и продукты их обмена. В состав тел микроорганизмов в значительном количестве входят белковые вещества. Поэтому относительное содержание белковых веществ, включая и белковые вещества микробных тел, при разложении растительных остатков не убывает, а возрастает.

В зависимости от условий разложения в почве накапливаются качественно различные перегнойные вещества. При аэробном разложении лесной подстилки грибной флорой образуются растворимые бесцветные фульвокислоты. При бактериальном разложении органических остатков травянистых растений образуются малорастворимые, темноокрашенные гуминовые кислоты.

Изменение состава растительных остатков вследствие неодинаковых скорости и полноты разложения составных частей в почве и деятельности микроорганизмов приводит к постепенному новообразованию специфических перегнойных веществ. Следовательно, главная роль в круговороте химических веществ в почве и, прежде всего, поступающих органических соединений от растений и различных удобрений принадлежит микроорганизмам, т.е. живой части почвы.

Любая почва населена различными микроорганизмами: грибами, бактериями и актиномицетами, а также водорослями и простейшими. Их численность в разных почвах неодинакова. Состав и число микроорганизмов определяются не только типом почв, но и степенью их окультуренности. Чем выше окультуренность почвы, тем больше в ней содержится полезных микробов. Микробная масса на 1 га составляет 5-7 т. Если учесть, что за вегетационный период в почве сменяется несколько поколений микроорганизмов, то общая живая масса их на 1 га может достигать довольно внушительных размеров — 15-20 т и более.

Микроорганизмы — наиболее энергичная и подвижная часть почвы. Их важная роль в почвенных процессах и питании растений определяется не только тем, что эти живые существа обладают колоссальным ферментативным действием на окружающий мертвый субстрат, но и огромной активной поверхностью, на которой с большой скоростью совершаются сложнейшие превращения различных соединений почвы и вносимых удобрений.

Общая поверхность микробного населения 1 га почвы составляет примерно 500-600 га, т.е. микроорганизмы — главная живая плазма почвы. В конечном итоге они определяют течение большинства процессов в почве и во многом влияют на характер питания растений. Превращения поступающих удобрений также в определенной степени связаны с жизнедеятельностью почвенной биоты.

Дополнительные материалы по теме:

  • Свежие записи
    • Как избавиться от мошек в цветах комнатных растений
    • Что добавить в воду чтобы цветы дольше стояли
    • Какие цветы сочетаются друг с другом на клумбе
    • Жмых от кофе как удобрение для комнатных цветов
    • Белый липкий налет на комнатных цветах как избавиться