Температура почвы больше температуры воздуха

У обитателей почвы в процессе эволюции выработались приспособления к соответствующим условиям жизни: особенности формы и строения тела, физиологических процессов, размножения и развития, способности переносить неблагоприятные условия, поведения. У дождевых червей, нематод, большинства многоножек,у личинок многих жуков и мух сильно удлиненное гибкое тело, позволяющее легко продвигаться в извилистых узких ходах и трещинах почвы. Щетинки у дождевых и других кольчатых червей, волоски и коготки у членистоногих позволяют им значительно ускорять свои движения в почве и прочно удерживаться в норах,цепляясь за стенки ходов.

В настоящее время почва рассматривается как саморазвивающаяся система, обеспечивающая круговорот веществ в природе. В почве происходит обезвреживание всех видов отходов ( функция самоочищения почвы).

Воздушный режим

Почвенный воздух отличается от атмосферного тем, что в его составе значительно больше углекислого газа и меньше кислорода. Вместе с тем следует подчеркнуть большие колебания в составе почвенного воздуха в зависимости от почвы, типа культуры, системы удобрений и обработки почвы.

Когда в почве содержание углекислого газа выше 3—5%, а кислорода — ниже 10 %, то наступает угнетение растений.

А. Г. Дояренко, установил, что недостаток воздуха в почве очень сильно лимитирует ее плодородие. Почвенный воздух заполняет поры, не занятые водой. Избыточная влажность приводит к резкой его недостаточности.

Почвенный воздух необходим для дыхания корней растений, почвенных организмов, биохимических процессов превращения питательных элементов.

Различие состава почвенного и атмосферного воздуха обусловлено протекающими в почве биологическими процессами. Понижение содержания в почвенном воздухе кислорода связано с потреблением его аэробными микроорганизмами на различные реакции окисления, включая разложение мертвого органического вещества, и поглощением корневыми системами высшей растительности. Обогащение почвенного воздуха углекислотой происходит в результате разложения мертвого органического вещества микроорганизмами и выделения ее корневыми системами. В заболоченных почвах, где протекают анаэробные процессы разложения, в заметных количествах накапливаются водород, метан, сероводород.

Почва — важный источник углекислого газа, который потребляется растениями в процессе фотосинтеза. Газообмен между почвой и атмосферой осуществляется посредством таких факторов, как диффузия, изменения барометрического давления, температуры почвы и воздуха, поступления в почву воды, а также при помощи ветра. Увеличивая объем при нагревании почвы, воздух ее частично выходит наружу, при охлаждении почвы почвенные поры получают новую порцию воздуха из атмосферы.

Всякому животному, чтобы жить, необходимо дышать. Для дыхания в почвеиные условия, чем в воде или в воздухе. В состав почвы входят твердые частицы,вода и воздух. Твердые частицы в виде небольших комочков занимают немногим более половины объема почвы; остальной объем приходится на долю промежутков— пор, которые могут быть заполнены воздухом (в сухой почве) или водой(в почве, насыщенной влагой). Как правило, вода покрывает тонкой пленкой все почвенные частицы; остальное пространство между ними занято воздухом,насыщенным водяными парами.

При поступлении воды в почву «старый» воздух из почвенных пор вытесняется и они заполняются «новым» воздухом после оттока из них влаги.

Оптимальное содержание воздуха в пахотной почве для отдельных культур следующее: для зерновых— 15— 20 % общей пористости, пропашных — 20—30,многолетних трав— 17—21 %.

Важный прием регулирования воздушного режима почвы — механическая обработка, позволяющая создавать необходимое строение пахотного слоя и тем самым обеспечивать условия нормального газообмена в почве. Значение обработки в регулировании воздушного режима почвы возрастает при избыточном увлажнении почв и их тяжелом гранулометрическом составе.

Воздухообмен почвы с атмосферой осуществляется преимущественно через некапиллярную скважность, поэтому полнота воздухообмена зависит от величины не капиллярной скважности. Если не капиллярная скважность невелика или почва насыщена водой до состояния полной влагоемкости, то воздухообмен за,труднен и устанавливаются анаэробные условия. Это имеет место преимущественно в почвах повышенного увлажнения или весной в период насыщения талыми водами.

В лесных почвах беспозвоночные, особенно дождевые черви, перерабатывают более половины всех опавших листьев. За год на каждом гектаре они выбрасывают на поверхность до 25—30 т переработанной земли, создавая тем самым хорошую,структурную почву. Если распределить эту землю равномерно по всей поверхности гектара, то получится слой в 0,5—0,8 см. Поэтому дождевых червей справедливо считают важнейшими образователями почвы.

Читайте также: Приборы для замера кислотности почвы

Температурный режим

Физиологические процессы, происходящие в растении, жизнедеятельность микроорганизмов и почвенной фауны, химические процессы превращения веществ и энергии возможны только в определенных температурных границах.

Воздействие температуры почвы на растения начинается с самых первых стадий его роста и развития. Причем отдельные растения предъявляют различные требования к температурному режиму почвы. Наряду с крайними границами температур, характеризующими температурные минимум и максимум для отдельных видов растений, существует свой определенный оптимум. Требования к тем пературным условиям определенных растений изменяются по мере их роста и развития.

Основной источник тепла в почве — солнечная энергия. Другой, но менее значительный — тепло, выделяемое в почву в результате биологических и химических превращений, а также поступающее из глубинных слоев земли.

Поступление, аккумуляция и передача тепловой энергии в почве осуществляют через ее тепловые свойства: теплопоглотительную способность,теплопроводность.

Теплопоглотительная способность почвы характеризуется величиной альбедо (А) — долей отражаемой почвой солнечной радиации.

Альбедо — важная характеристика температурного режима почвы, зависит от цвета почвы, ее структуры и выровненности, а также влажности.

Растительность, покрывающая почву, значительно изменяет альбедо.

На лучепоглотительную и лучеотражательную способность почвы большое влияние оказывает степень ее гумусированности.

Теплопроводность почвы — количество тепла, протекающее через слой почвы площадью 1 см2 и толщиной 1 см в перпендикулярном к ней направлении при разнице на обоих сторонах слоя в 1 °С. Теплопроводность, как и теплоемкость, зависит от гранулометрического и химического составов почвы,ее влажности. Сухие, хорошо гумусированные почвы плохо проводят тепло,сырые, тяжелые почвы отличаются повышенной теплопроводностью.

На поглощение почвой солнечной энергии большое влияние оказывает экспозиция склона. Южные склоны значительно отличаются по тепловому режиму почв от северных. Иногда эти различия достигают величин, соответствующих разным климатическим зонам.

Расход тепла почвой происходит по следующим статьям: лучеиспускание тепла в атмосферу, передача тепла прилегающему слою воздуха (конвекция), потери на испарение воды (48%).

Меры по улучшению теплового режима почв в общем совпадают с мерами регулирования водного режима, а также особое значение приобретает снегозадержание и в целом агролесомелиоративная организация территории,дождевания и мульчирования поверхности почвы.

Агрохимические факторы плодородия

Растения усваивают азот и зольные элементы из почвы в форме минеральных солей, растворенных в почвенном растворе. При этом используются как восстановленные (соли аммония), так и окисленные (соли азотной кислоты)соединения азота.

Растения могут усваивать некоторые относительно простые органические азот-и фосфорсодержащие вещества (некоторые аминокислоты, фитин), однако практическое их значение в питании ничтожно. Источником энергии в растении для поглощения элементов питания является дыхание. Более молодые,интенсивно дышащие корни больше усваивают из почвенного раствора минеральных солей.

Процессы корневого питания растений тесно связаны с такими свойствами почвы, как рН почвенного раствора, водно-воздушный режим почвы, содержание в ней усвояемых элементов питания, и другими условиями внешней среды.

Кислотность почвы снижает поглощение питательных веществ растениями.

Отмечают как прямое, так и косвенное действие повышенного содержания в почве ионов Н+. Прежде всего изменяется физико-химическое состояние цитоплазмы клеток корня, нарушается ее проницаемость, наружные клетки ослизняются, корни плохо растут.

Большинство возделываемых культур и ,почвенных микроорганизмов лучше развивается при слабокислой или нейтральной реакции почвы. Однако отдельные виды культурных растений значительно различаются по требовательности как к наиболее оптимальному для их роста интервалу рН, так и к смещению его в ту или другую сторону.

Недостаток в почве обменных кальция и магния вызывает резкое ухудшение физических и физико-химических свойств почвы (структура почвы, емкость поглощения, буферность). В почвенном растворе появляются свободные ионы алюминия и марганца, токсичные для растений. Подвижность же ряда микроэлементов (например, молибдена) уменьшается, растения испытывают в них недостаток. Повышенная кислотность угнетает почвенные организмы, прежде всего нитрификаторы и азотфиксирующие бактерии (клубеньковые и свободноживущие), почвенную фауну (дождевые черви, клещи, ногохвостки). В целом биологическая активность кислой почвы несравненно ниже, чем нейтральной.

Читайте также: Роль факторов почвообразования в формировании почв

Чтобы привести реакцию почвы к интервалу слабокислая — слабощелочная,применяют химическую мелиорацию почв. Кислые почвы периодически известкуют,а щелочные, прежде всего солонцы, гипсуют. Для повышения содержания в почве, таких жизненно важных элементов как калий, азот и фосфор, вносят минеральные удобрения. Эффективность удобрений зависит от почвенно-климатических условий. Уровень плодородия почвы, состояние питательного режима, трансформационные ее возможности в отношении доступности вносимых удобрений для возделываемых растений — все это оказывает влияние на выбор видов удобрений.

Влияет на почву и чисто механическая работа многих живущих в ней животных.Они прокладывают ходы, перемешивают и разрыхляют почву, роют норы. Все это увеличивает количество пустот в почве и облегчает проникновение в ее глубину воздуха и воды. В такой «работе» участвуют не только сравнительно мелкие беспозвоночные животные, но и многие млекопитающие — кроты, сурки,суслики, тушканчики, полевые и лесные мыши, хомяки, полевки, слепыши. Сравнительно крупные ходы некоторых из этих животных уходят вглубь на 1—4 м. Глубоко идут ходы и крупных дождевых червей: у большинства из них они достигают1,5— 2 м, а у одного южного червя даже 8 м. По этим ходам, особенно в более плотных почвах, корни растений проникают в глубину. В некоторых местах,например в степной зоне, большое количество ходов и нор роют в почве жуки-навозники,медведки, сверчки, пауки тарантулы, муравьи, а в тропиках — термиты.

Температура почвы и температура воздуха. Все о температуре почвы

Популярные материалы

Today’s:

Температура почвы и температура воздуха. Все о температуре почвы

Разные культуры можно высаживать дедовским способом: в одно и то же время каждый год. Однако климат меняется, соответственно, и температура почвы становится другой. Каждому растению для развития требуются свои условия, и первое на что надо обращать внимание – это состояние почвы.

В нашей статье объясним подробно, когда семя готово прорасти в земле и как узнать, что пора заняться посадкой; что понадобится для измерения температуры почвы и как быть, если нет нужных приборов под рукой; по каким народным приметам можно ориентироваться, что пришло время высаживать растения.

Тепловые характеристики почвы

Температура почвы очень важна для посадки, поскольку от этого показателя зависит поступление влаги и минерального питания к корням, рост и дыхание растения. Зимой культуры не высаживают именно потому, что в мороз перестают происходить процессы почвообразования. В прогретой до определенного показателя почвенной среде вновь начинается передвижение воды, возобновляют свою деятельность микробы и так далее. На температуру почвы влияют географическое положение местности и высота над уровнем моря, также имеют значение и свойства самого грунта: его механический состав, состояние влажности, другие свойства.

Глинистая почва при влажном климате летом будет не такой теплой, как почва с легким механическим составом, а вот в зимний период песчаная земля промерзнет сильнее, нежели более связные почвы. Увлажненная земля летом холоднее, чем сухая. Структурный грунт за счет лучшего воздухообмена быстрее прогреется весной, чем бесструктурный. Температура наружного слоя земли всегда более высокая по сравнению с корнеобитаемым слоем.

При какой температуре воздуха почва прогреется до 10 градусов. Подводим итоги Сентябрьского стоп-кадра в 2020/2020 учебном году

В измерении температуры почвы приняли участие Петрозаводск и Санкт-Петербург, Москва и Ижевск, республика Татарстан, Ростовская область и Астраханская область.

Из участников с высокой температурой воздуха в день стоп-кадра начнём анализ с анкеты Черки-Гришинской школы. При температуре воздуха 26°С поверхность воздуха прогрелась до 29°С. При этом, когда они измерили температуру воздуха на глубине 10 см, перепад оказался достаточно значительным – 18°С. На глубине 20 см уже всего 14°С.

У группы Лазорики из станицы Мелиховская исходные данные вроде бы похожи. Высокая температура воздуха – 30°С, температура поверхности почвы – 31°С. А вот дальше начинаются странности: на глубине 10 см – 31°С, а на глубине 20 см – 30°С. Вроде бы интуитивно понятно, что почва прогревается медленно и под слоем земли холоднее, чем на поверхности земли. Человек пользовался этим свойством, выкапывая погреба. Мне кажется, что в этом случае стоило бы уточнить, насколько точно группа Лазорики соблюдала протокол исследования.

Читайте также: Луговая почва краткая характеристика

А вот из результатов участников из пгт. Красные Баррикады можно понять одну из причин, возникающих при измерении погрешностей. Посмотрите на фотографию, которую они разместили в анкете.

При измерении только часть «щупа» датчика погружена в почву, можно предположить, что участники не проделали предварительно углубление в почве, как требует протокол проекта, а попытались воткнуть датчик прямо в почву. При этом возникает сопротивление, так что кажется, что дальше втыкать нельзя, чтобы не сломать датчик. Однако у таких датчиков температуры есть одно неожиданное свойство – измерителем служит вся длина датчика. Поэтому половина датчика измеряет реальную температуру почвы на нужной глубине, а половина датчика находится в условиях тёплого наружного воздуха. В результате возникает сильное искажение результата измерения.

Такую же картину можно видеть и у других участников проекта, работавших с цифровыми датчиками температуры.

Меня очень заинтересовали. Это единственная анкета, в которой отмечено, что чем глубже, тем температура почвы выше, хотя разница небольшая. Впрочем и температура воздуха в Петербурге ниже, чем у большинства остальных участников. Вывод, который сделал учащийся с ником alice30701, совпадает с выводами, которые делали мои собственные учащиеся в стоп-кадрах прошлого года. Осенью почва быстрее остывает с поверхности, а на глубине ещё хранит тепло. Весной, наоборот, чем глубже, тем холоднее, потому что почва постепенно прогревается, начиная с поверхности. (Об этом можно прочесть в статье ниже, посвящённой анализу мартовского стоп-кадра прошлого учебного года).

Соотношение температуры воздуха и почвы. Тепловой режим почв

Теплово́й режи́м почв — совокупность и последовательность всех явлений поступления, перемещения, аккумуляции и расхода тепла в почве на протяжении определенного отрезка времени (так различают суточный и годовой тепловой режимы). Основным показателем теплового режима является температура почвы (на разных глубинах почвенного профиля). Она зависит от климата, рельефа, растительного и снежного покрова, тепловых свойств почвы.

Тепловой режим обусловлен преимущественно радиационным балансом , который зависит от соотношения энергии солнечной радиации , поглощенной почвой, и теплового излучения. Некоторое значение в теплообмене имеют экзо- и эндотермические реакции, протекающие в почве при процессах химического, физико-химического и биохимического характера, а также внутренняя тепловая энергия Земли. Однако два последних фактора оказывают незначительное влияние на термический режим почвы. Количество тепла, приходящее изнутри земного шара к поверхности почвы, составляет всего 55 кал (230 Дж)/см² в год.

Радиационный баланс изменяется в зависимости от широты местности и времени года. В тундре он равен 10-20 ккал (42-84 кДж)/см², в южной тайге — 30-40 (126—167), в черноземной зоне — 30-50 (126—209), а в тропиках превышает 75 ккал (314 кДж)/см² в год.

И величина радиационного баланса, и дальнейшее преобразование фактически поступившего в почву тепла теснейшим образом связаны с тепловыми свойствами почвы: теплоемкостью и теплопроводностью. Однако наиболее крупные изменения в тепловом режиме почв определяются различиями общеклиматических условий. чаще всего о тепловом режиме судят по её температурному режиму. Температурный режим графически изображается в виде термоизоплет — кривых, соединяющих точки одинаковых температур.

Температурный режим почв следует за температурным режимом приземного слоя, но отстает от него. Средние годовые температуры почвы возрастают с севера на юг и с востока на запад. В пределах России и сопредельных государств среднегодовая температура почвы изменяется в пределах от −12 до +20°С. Выделяются 2 области — положительных и отрицательных среднегодовых температур почвы на глубине 20 см. Геоизотерма 0°С проходит по диагонали с северо-запада на юго-восток. Область отрицательных среднегодовых температур на глубине 20 см в основном совпадает с областью распространения многолетнемерзлых пород.

Типы температурного режима почв — по классификации В. Н. Димо выделяются следующие Т. т. р. п.:

  • Свежие записи
    • Как избавиться от мошек в цветах комнатных растений
    • Что добавить в воду чтобы цветы дольше стояли
    • Какие цветы сочетаются друг с другом на клумбе
    • Жмых от кофе как удобрение для комнатных цветов
    • Белый липкий налет на комнатных цветах как избавиться