Первоисточником обеспечения земли влагой являются осадки холодного периода года, в частности снег, иней, гололед. В летний период эту функцию выполняют грунтовые воды. Как удержать влагу и разумно ее использовать? Советы для южных регионов
Вода является источником жизненной энергии для всего живого. Поглощая ее, растения восстанавливают запасы влаги и получают природный температурный регулятор. В процессе терморегуляции растение испаряет до 99% всей полученной воды, при этом на формирование вегетативной массы использует только 0,2-0,5%. За последние 30 лет среднегодовая температура воздуха на юге каждый сезон превышает норму. Ситуация с осадками ухудшается, для эффективного земледелия не хватает 100-150 мм до нормы. Поэтому агрономы прибегают к различным способам.
1. При весенне-полевых работах в южных хозяйствах пытаются отказаться от культивации. После уборки культуры вслед запускают дисковый агрегат, затем проводят глубокую безотвальную обработку (лущение стерни). После сбора урожая за комбайном движется трактор, который дискует почву на глубину 5-12 см. Чтобы закрыть влагу, в основном, проводят боронование. В предзимний период выполняют зяблевую обработку для лучшего проникновения влаги в почву и повторяют операцию весной.
2. На черноземах среднего гранулометрического состава, чтобы сохранить влагу, стараются не уплотнять почву и прибегают к техническим способам: осенью проводят вспашку, весной культиватором убирают корку, проводят дискование на глубину 5-6 см и боронуют.
3. Технология no-till позволяет не беспокоить землю плюс поля всегда накрыты пожнивными остатками предыдущих культур. Часто говорят, что у технологии есть минусы, например, сильный дождь может смыть растительные остатки, которые лежат на поле неравномерно. Теоретически это возможно, но пока еще с подобной ситуацией в южных регионах не сталкивались.
4. При выращивании сахарной свеклы с осени практики советуют выровнять поле. После уборки пшеницы, ячменя и других культур провести дискование для провокации всходов сорняков, затем основную обработку и глубокое разрыхление на глубину от 35 до 40 см. Вспашку под сахарную свеклу выполняют на глубину 32 см, под кукурузу и подсолнечник — 27 см. Ранней весной, как только появляется возможность зайти в поле, закрывают влагу на 5 см.
5. В последние годы за все лето на юге может не выпасть ни капли дождя. Среднюю урожайность культур может обеспечить соблюдение севооборота с обязательным содержанием паров. Для накопления влаги нужно проводить безполивное глубокорыхление почвы. Благодаря такой обработке урожайность растет в среднем на 10% по сравнению с пахотой. Чтобы сохранить влагу, на поверхности оставляют растительные остатки в виде мульчирующего слоя, а ранней весной проводят боронование.
Запасы влаги в почве (Дискование, Вспашка, Ноу Тилл)
Со структурным составом почвы тесно связан ее водный режим.
Анализируя ранневесеннее накопление влаги, следует отметить, что на фоне традиционной вспашки ее накопилось больше, что связано с лучшей водопроницаемостью (таблица 6).
Количество продуктивной влаги на варианте со вспашкой в слое 0-70 см составило 116,5 мм, обеспечив равное ее распределение между пахотным и подпахотным горизонтами.
Наименьшими запасами продуктивной влаги отмечался вариант с нулевой обработкой почвы – 100,8 мм, что на 3,2-15,7 мм меньше чем при поверхностной обработке и вспашке соответственно.
Примечательно, что в подпахотных горизонтах запас продуктивной влаги был по вариантам практически одинаков, что указывает на достаточное промачивание в осенне-зимний период. Однако кратковременные крайне необходимые весенние осадки при прямом посеве не аккумулируются почвой в достаточной мере.
Кроме того необходимо отметить, что на варианте с no-till увеличение общей влаги в подпахотном горизонте 30-70 см до 147,7 мм, не обеспечивало преимущества в накоплении здесь доступной влаги. Ее количество варьировало по вариантам опыта от 60,1 до 62,4 мм.
Влажность почвы является одним из важнейших факторов, влияющих на рост, развитие и продуктивность сельскохозяйственных культур.
Для получения наибольшей урожайности растений их нужно в достаточной мере обеспечить влагой.
Дефицит влаги, как отмечает Н.И. Коронкевич представляет собой основной фактор, лимитирующий продуктивность биомассы и, в конечном счете, урожай.
По мнению А.А. Роде, управление водным режимом почв, включая черноземы, – всегда один из важных, а часто и самый важный прием повышения продуктивности сельскохозяйственных угодий.
В регулировании водного режима почвы важную роль играет обработка, с помощью которой возможно создание такого строения пахотного и подпахотного слоев, которое отвечало бы большому накоплению и лучшему сохранению влаги в почве.
Вспашка или глубокое рыхление
У вспашки и глубокорыхления есть свои преимущества и недостатки:
Преимущества отвальной вспашки:
- Плуг надежно заделывает растительные остатки, семена сорняков, вредителей и возбудителей болезней в почву. Растительные остатки впоследствии минерализуются, а семена сорняков не способны прорастать с большой глубины.
- Происходит дифференциация пахотного слоя почвы по плодородию (смешивание верхнего и нижнего слоя пахотного горизонта почвы).
- Самый энергозатратный способ обработки почвы.
- При систематическом использовании вспашки образуется переуплотненная плужная подошва, препятствующая проникновению воздуха и влаги в подпахотный горизонт, а значит и ухудшающая способность почвы аккумулировать влагу в осеннее-зимний период.
- Угроза возникновения ветровой эрозии.
Вспашка больше подходит для регионов с оптимальными почвенно-климатическими условиями для выращивания культур.
- Расход топлива при значительно большей глубине обработки меньше, чем у плуга.
- Потенциал накопления влаги в данном случае значительно выше традиционной вспашки.
- На поверхности почвы сохраняются растительные остатки, препятствующие ветровой и водной эрозии.
- В результате активного развития патогенов, поля после чизеля требуют большей пестицидной нагрузки, чем после плуга.
- Глубокорыхлители хуже подрезают многолетние сорняки, а семена однолетников остаются на поверхности.
🔹 Глубокорыхление можно порекомендовать земледельцам засушливых или наоборот – чрезмерно влажных регионов, а также степных районов, где велика вредоносность ветровой эрозии или холмистых местностей, в которых плодородный слой почвы подвержен смыву.
🔹 Кроме того, чизельный плуг не будет лишним в любом хозяйстве, т.к. периодическое использование его в севообороте (например, под пропашные культуры с мощной корневой системой) составит отличное дополнение к плугу, позволив избавиться от плужной подошвы.
🔹 Прежде чем проводить глубокорыхление, обязательно проверьте почву пенетрометром, т.к. возможно это поле не так нуждается в глубокорыхлении, как в вспашке.
Агрономы поделились опытом проведения обработки почвы в своих регионах:
На серых лесных почвах и выщелоченных чернозёмах, в основном, практикуют вспашку и мини-тилл. Вспашка, хотя и глубокая обработка, но она не освобождает от глубокого рыхления! Т.е. плуг не может заменить чизельный плуг, так как работает в основном на 20-25 см. Если, конечно, не брать в расчёт экзотические плуги с вырезными корпусами (лемех идёт ниже на 10 см отвала, не выворачивая подпахотный горизонт наверх).
Как работают агрономы в Нижегородской области:
- После уборки культуры – дискование на глубину 10-15 см (в идеале сразу после уборки);
- Через 2-3 недели после дискования – глубокая культивация на глубину 20-22 см. Под кукурузу и питомники яровых (от падалицы озимых) вспашка на глубину 22 см.
Если сравнивать работу оборотного плуга и тяжёлого стерневого культиватора на глубину 22 см, то:
- по расходу ДТ культиватор экономит примерно 3 л/га;
- производительность культиватора на 20-30% выше;
- культиватор экономит на расходниках примерно в два раза;
- отсутствие водной и воздушной эрозии после культивации. Казалось бы, вспашка сильно вспушивает почву, и она моментально поглощает влагу, но после первого сильного дождя вспашка сильно заплывает, и влагопроницаемость становится гораздо хуже;
- культиватор гораздо лучше способствует разложению соломы. Плуг закидывает растительные остатки на дно борозды, и в анаэробных условиях они перегнивают очень долго;
- пенетрометр показывает, что после культиватора плужная подошва менее выраженная, а пахотный горизонт такой же рыхлый.
По качеству работы оба на одинаковом уровне. Плюс отсутствие борозд на поле после культивации. По стоимости они одинаковы +/-.
Если сравнивать по засорённости сорняками, в условиях нашего хозяйства, между вспашкой и глубокой культивацией разницы нет, так как активно используем гербициды. Если рассматривать с точки зрения эко производства — плугу нет равных! Без гербицидов плуг борется с сорняками максимально эффективно.
Да, после культиватора, кажется, как будто, поле просто продисковано (солома перемешана с почвой). Для кого-то это неприемлемо, но это гораздо лучше с точки зрения экологии и земледелия, чем голая вывернутая земля.
Ещё одно. Если механизатор недобросовестный, он запросто может выдать обычную дискацию за глубокую культивацию. Разницу можно увидеть только с помощью пенетрометра. Так что будьте бдительны.
🔶 При разных погодных условиях преимущество бывает и у вспашки, и у безотвальной обработки. Но нынешний год однозначно показал преимущество вспашки в Сибири. Если в прошлые годы при глубоком рыхлении и при вспашке урожайность была примерно одинаковая, то нынче вспашка опередила плоскорезные обработки примерно на 10%. Связано это со сложными погодными условиями. Весной была засуха, а летом пошли дожди без остановки. Поэтому сорные растения весной плохо взошли, а проросли летом, когда уже поздно было гербицидами работать. А по безотвальным обработкам всегда засоренность выше, чем по вспашке. Кроме того, если в благоприятные годы плоскорезная обработка позволяет накопить больше влаги за зиму (за счет оставления стерни), то нынче из-за весенней засухи этого преимущества у неё не было. Сухо было весной одинаково по всем обработкам почвы. С экономической точки зрения глубокая обработка дает небольшую экономию — около 300 руб./га в сравнении со вспашкой. При одинаковой урожайности выгода есть. Но нынче безотвальная проиграла.
🔶 В Сибири плоскорезом ежегодно нельзя обработку делать, периодически всё равно нужна отвальная зябь, поскольку почвы здесь после дождя или после снеготаяния комком схватываются. Не только ветром, а и лопатой не раздолбишь.
Читайте также: Каким методом определяют кислотность почв
🔷 Курская область. За годы исследований обработок почвы (вспашка, поверхностная и глубокое рыхление): вспашка и поверхностная бились между собой за первое место на разных культурах, а глубокое рыхление стабильно всем проигрывало.
Также заложили опыт: кукуруза, лён, пшеница озимая, ячмень и горох были посеяны по вспашке, нулю (первый год), поверхностной и глубокому рыхлению. В итоге проводим вспашку почти под все культуры. Не пашем только после подсолнечника, чтобы не запахать потери и не получить многолетнюю проблему со всходами падалицы подсолнечника и под зерновые. Вспашка должна быть с предплужниками и выровнена с осени. Никакой обработки глубже 3 см весной!
🔷 Воронежская область. Под сахарную свёклу — однозначно пахать с оборотом пласта, под кукурузу и подсолнечник можно делить обработку плугом и глубокорыхлителем 50/50, под зерновые достаточно минималки (1-2 дискования). По этому году в регионе картина следующая — по сахарной свекле преимущество за вспашкой; хозяйства, где применялось рыхление, свёклу запахивают, даже непересеянную. По подсолнечнику — вспашка выиграла, урожайность 23-26 ц/га; по глубокорыхлению — потолок 18 ц/га. А вот с кукурузой всё по-другому, здесь обработка почвы влияние не оказала, решающую роль сыграл ФАО.
- Живой пример этого года: весновспашка, обработка БДТ, сев сошником: ячмень 14 ц/га, пшеница 10 ц/га. Всходы-кущение местами присушило.
- Второй вариант: обработка КПЭ-3,8, сев лапой: ячмень 23 ц/га, пшеница 18 ц/га. Варианты без удобрений. Основной сорняк – овсюг, обработки в одно время и одной дозой.
- В Хакасии — почвы каштановые, подверженные ветровой эрозии. Здесь, в степи, вспашку нежелательно применять, нужна безотвальная обработка.
Лучше безотвальная глубокая вспашка, 30-40 см, осенью:
- Сохранение стерни, что способствует задержке снега.
- Лучшее накоплению влаги за счет глубины обработки.
- Экономия топлива. Трактору легче пахать безотвально, чем отвально..
- Борьба с разными видами гнили. Опыт показывает, что на отвальной вспашке проблемы с гнилями проявляются сильнее чем на безотвальной, за счет заделки пожнивных остатков.
- Хорошее решение в условиях степи, так как исключается ветровая эрозия.
- Борьба с корнеотпрысковыми сорняками
Минус безотвальной вспашки – засоренность поля сорняками, но все уже давным-давно работают пестицидами.
А Вы в своем регионе чему отдаете предпочтение: вспашке или глубокому рыхлению?
С обсуждением по данной теме Вы можете ознакомиться здесь.
Невспаханная земля. Сохраненная влага
NO-TILL как способ управления накоплением влаги в почвах
Гари Петерсон, Колорадский государственный университет
Профессор Гари Петерсон — человек не только глубоких знаний, но и открытый собеседник, способный увлечь практиков оригинальными идеями и простотой ясной мысли. На конференции в Днепропетровске, где Петерсон читал этот доклад, он моментально оброс друзьями и новыми знакомствами, его приглашали в гости, в хозяйства, и он откликался искренне, потому что ему хватило недели пребывания на этой земле, чтобы полюбить Украину.
Осадки и атмосферная потребность в испарении
В засушливых условиях естественные осадки — единственно доступный источник влаги. Полузасушливые регионы, например Восточная Европа и Западная Азия, получают непостоянное и ограниченное количество осадков. Поэтому успешное выращивание культур на неорошаемых почвах зависит от адекватного накопления воды в почве для поддержания культуры до выпадения следующих осадков. Культуры на неорошаемых землях полагаются исключительно на воду в почве, накопленную между выпадением осадков, и из-за ненадежного выпадения осадков накопление воды в почве исключительно важно для возделывания культур на неорошаемых землях.
Существует три принципа накопления влаги:
1) накопление воды — сохранение осадков в почве;
2) удержание воды — сохранение воды в почве для более позднего использования культурами;
3) эффективность использования воды — эффективное использование воды для получения оптимального урожая. Лишь недавно у нас появилась технология, которая значительно изменила подход к управлению осадками на неорошаемых землях. Когда механическая обработка почвы была единственным способом контроля сорняков и подготовки семенного ложа, управление накоплением осадков и удержанием их в почве было очень трудоемкими процессом. Обрабатываемые поля вообще не были покрыты и были в значительной мере подвержены влиянию ветровой и водной эрозии. Интенсивная обработка почвы оказывает много отрицательных эффектов на саму почву, включая снижение количества органического вещества и повреждение структуры почвы. Использование сокращенной обработки и no-till позволяет нам эффективно собирать воду и сохранять ее. В большинстве случаев, когда системы сокращенной обработки и no-till правильно отлажены, они приводят к более устойчивому выращиванию культур на неорошаемых землях. В данной статье будут рассмотрены принципы улавливания осадков и сохранения их в почве.
Накопление воды
Сохранение воды начинается с накопления случайных осадков (дождя или снега). Накопление воды должно быть максимизировано в рамках экономических ограничителей определенной ситуации. Принципы, управляющие свойствами почвы, которые влияют на способность накапливать влагу, следующие: структура почвы, образование агрегатов и размер пор. Мы также рассмотрим взаимодействие накопления и удержания воды по сравнению с испарением. Например, сокращение времени застаивания воды на поверхности почвы и перемещения влаги вглубь уменьшает возможность испарения. Это особенно важно в регионах, где после выпадения дождя летом возникает большой потенциал испарения.
Визуализация улавливания осадков
Мы должны стараться, чтобы вода, содержащаяся в капле дождя, немедленно попадала в промежутки между почвенными агрегатами и удерживалась там для дальнейшего ее использования культурой. Для начала давайте представим себе улавливание осадков с точки зрения капли дождя, которая ударяется о поверхность почвы и проникает вглубь (рис. 1). Обратите внимание на то, что чем дольше промежутки между агрегатами почвы открыты, тем меньше вода имеет преград и быстрее впитывается, таким образом, накопление осадков будет отличным.
Поступление воды в почву, на первый взгляд, выглядит очень простым процессом, когда поступающая вода просто вытесняет присутствующий в почве воздух. Однако на самом деле это сложный процесс, т.к. скорость инфильтрации воды в почву подвержена влиянию множества факторов, например, пористости почвы, содержания воды в почве и проницаемости профиля почвы. Удерживание воды — сложный феномен, поскольку максимальная скорость инфильтрации достигается в начале выпадения осадков, а затем быстро снижается, по мере того, как вода начинает заполнять пространство пор на поверхности.
Текстура почвы сильно влияет на скорость инфильтрации, но при помощи менеджмента текстуру почвы изменить нельзя. Большое количество макропор на поверхности (большие поры), как и те, которые присутствуют в почвах с грубой структурой (песчаные суглинки и т.д.), увеличивают скорость инфильтрации влаги. Почвы с мелкой структурой (пылеватые суглинки и тяжелые глинистые суглинки) обычно обладают меньшим количеством макропор (маленькие поры), а, следовательно, скорость инфильтрации на таких почвах меньше по сравнению с почвами, у которых грубая структура.
Агрегация почвы также управляет размером макропор почвы. Таким образом, почвы с одинаковой структурой, но с разной степенью агрегации могут значительно отличаться в плане размера макропор. К счастью и к сожалению, степень агрегации почвы можно изменить при помощи управленческих методов, например, no-till, добавления растительных остатков, которые помогают восстановить агрегацию. Исключительно важно помнить, что почвы с мелкой структурой, например, пылеватые суглинки или тяжелые глинистые суглинки, оставались хорошо структурированными, чтобы существовали открытые проходы для движения воды вниз. Помните, любая технология, которая уменьшает структурный размер, будет уменьшать размер пор на поверхности, а, следовательно, ограничивать проникновение воды в почву. Самой лучшей в этом плане является структура, которая может сопротивляться изменениям. Почвы со слабой структурой быстро теряют свою способность впитывать воду, если структурные агрегаты распадаются, и поры на поверхности почвы становятся меньше. Это может происходить либо из-за слишком интенсивной обработки почвы, либо в силу природных явлений, например, дождя.
Непосредственно поверхность почвы должна представлять интерес для менеджмента, т.к. условия, возникающие на поверхности почвы, предопределяют способность улавливать влагу. При работе в условиях засухи наша цель — использовать такие методы, которые приводят к увеличению степени инфильтрации реалистичным и экономически выгодным способом в рамках определенной системы выращивания культур.
Визуализация влияния капли дождя
Что же действительно происходит, когда капля падает на поверхность почвы? Размер капель зависит от силы грозы, которая, в свою очередь, предопределяется климатом определенного географического региона. Диаметр капель варьирует от 0,25 до 6 мм (средний — около 3 мм), а теперь сравните диаметр капли с диаметром почвенных агрегатов, в которые попадает эта капля, а почва, в свою очередь, ничем не покрыта; размер почвенных агрегатов обычно составляет менее 1 мм. Когда капля диаметром 3 мм, летящая со скоростью 750 см/сек, ударяется в агрегат диаметром меньше 1 мм, повреждение зачастую очень значительное. Если привести это к относительной массе, то этот феномен аналогичен тому, что в человека весом 80 кг врезается автомобиль весом 1600 кг, двигавшийся со скоростью 27 км/ч. Дождь с ветром, который ускоряет скорость капли, приводит к большему воздействию, т.к. ускоренная ветром капля несет в себе заряд энергии в 2,75 раз больше, чем дождь при штиле. Вполне очевидно, что почвенные агрегаты будут разрушены, особенно, если в них постоянно ударяются капли дождя при грозе любой продолжительности. Энергия дождевых капель отрицательно воздействует на структуру поверхности почвы, буквально «взрывая» агрегаты почвы. Когда агрегаты взрываются, оставшиеся маленькие частицы забивают пространство макропор почвы, и скорость инфильтрации снижается (рис. 2). Очевидно, что во время непродолжительной или несильной грозы влияние дождевых капель будет меньше. No-till дает решение этой дилемме, т.к. при подобной технологии растительные остатки остаются на поверхности, защищая поверхность почвы от воздействия капель дождя.
Защита почвенных агрегатов от влияния дождевых капель
Удерживание воды можно осуществлять на адекватном уровне, если мы сможем сохранить поры на поверхности почвы открытыми. Поэтому защита почвенных агрегатов от воздействия капель дождя — ключ к сохранению максимальной степени улавливания воды для определенной ситуации на почве (рис. 3).
Читайте также: Микроорганизмы почвы способные получать необходимую энергию от окисления минеральных соединений
Технология no-till, при которой растительные остатки остаются на поверхности, — частичный ответ на то, как защитить почвенные агрегаты. На рисунке 3 вы видите, как растительные остатки впитывают энергию дождевых капель, а поэтому почвенные агрегаты остаются неповрежденными. Таким образом, инфильтрация воды проходит в нормальном режиме. Благодаря контролю над сорняками с помощью гербицидов, мы можем просто контролировать сорняки без механической обработки, оставляя нашу почву максимально защищенной от воздействия энергии дождя.
При no-till покров почвы сохраняется круглый год, т.к. общая степень покрытия почвы представляет собой сумму покрова, образуемого самой растущей культурой, и покрова, созданного растительными остатками. Очевидно, что покрытие почвы очень динамично и может колебаться от 0% до 100% в рамках одного вегетационного сезона, в зависимости от того, какая культура сейчас растет и какая технология обработки почвы используется. Во время посева, например, покрытие почвы состоит только из растительных остатков. По мере роста культуры покрытие уже в основном осуществляется листвой самой культуры. Когда покров, созданный самой культурой, принимает на себя удар капли дождя, так же, как и растительные остатки, вода плавно скатывается на поверхность почвы со значительно меньшим зарядом энергии, поэтому почвенные агрегаты подвержены меньшей степени разрушения, поры на поверхности почвы остаются открытыми, а инфильтрация поддерживается на соответствующем уровне. По мере роста культуры количество растительных остатков снижается, т.к. происходит естественный распад за счет активности микроорганизмов. Когда покров, созданный растущей культурой, начинает уменьшаться, растительные остатки опять становятся основным средством защиты почвы, и цикл завершается. Помните о том, что механическая обработка почвы, во время, и после роста культур снижает количество растительных остатков на поверхности, а, следовательно, и защищенность поверхности почвы.
Польза от накопления воды благодаря покрову наиболее ощутима в регионах с летними осадками; например, циклы выращивания кукурузы (Zea mays L.) или зернового сорго в Великих равнинах Северной Америки приходятся на период, когда выпадает 75% годовых осадков. Наоборот, неорошаемые регионы, где зимой выпадает не очень много осадков (Северо-запад Тихоокеанского побережья в США), не обладают хорошо развитым покровом, когда выпадает большая часть осадков. Тем не менее, раннее формирование культур, посеянных осенью для получения хотя бы частичного покрова почвы, признано хорошей защитой почвы и способом борьбы с оттоком воды в течение зимних месяцев.
Другое воздействие растительных остатков на удержание воды
Помимо поглощения энергии капель и защиты почвенных агрегатов от разрушения растительные остатки физически блокируют отток воды, снижают уровни испарения во время дождя, позволяя воде уйти в профиль почвы до начала оттока. Общая инфильтрация воды является следствием того, насколько долго вода будет находиться в контакте с почвой (время возможности) до того, как она начнет стекать вниз по склону. Увеличение этой временной составляющей является ключевым управленческим инструментом в накоплении воды. Основным принципом увеличения «времени возможности» является предотвращение оттока воды, замедление его, и т.о предоставление возможности подольше находиться в контакте с почвой, а, следовательно, впитываться. Растительные остатки на поверхности почвы увеличивают «время возможности», т.к. физически блокируют и замедляют отток воды. Контурный посев также увеличивает пользу от растительных остатков в замедлении оттока воды, т.к. гребни играют роль мини-террас.
Duley и Russel (1939) были одними из первых, кто признал важность защиты почвы растительными остатками. В одном из своих экспериментов они сравнивали влияние 4,5 т/га уложенной соломы с равным количеством заделанной соломы и с непокрытой почвой на накопление влаги. Накопление влаги составляло 54% осадков при покрытии, состоящем из уложенной соломы, по сравнению с 34%, когда солома была заделана, и лишь 20% при непокрытой почве. Их эксперимент не предусматривал разделения влияния растительных остатков на такие компоненты, как защита почвы, испарение и блокировка воды, но комментарии говорят о том, что сохранение пористости и физическая блокировка воды значительно снижали отток влаги во время гроз и были основными составляющими увеличения накопления воды во время сезона.
Данные исследования Mannering и Mayer (1963) явно показывают защитный механизм растительных остатков, влияющих на скорость инфильтрации на пылеватых суглинках с уклоном 5%. После четырех симуляций дождя в течение 48 часов почва, покрытая 2,2 т/га растительных остатков, имела окончательный уровень инфильтрации, несильно отличающийся от изначального. Исследователи обнаружили, что солома поглощала энергию капель и распространяла ее, предотвращая поверхность почвы от покрывания коркой и закупорки.
Демонстрация отрицательного воздействия механической обработки
Агрегация почвы снижается при увеличении интенсивности обработки почвы и/ количества лет культивации (рис. 4). Механическая обработка почвы отрицательно воздействует на агрегаты почвы по двум основным причинам: 1) физическое измельчение, которое приводит к сокращению размера агрегатов; 2) увеличение уровней окисления органического вещества, которое возникает из-за разрушения макроагрегатов и последующего открытия органических соединений почвенным организмам.Распределение размеров агрегатов также меняется таким образом, что микропористость увеличивается за счет макропористости, что приводит к снижению скорости инфильтрации. Степень, с которой механическая обработка влияет на инфильтрацию, регулируется сложным взаимодействием типа обработки, климата (особенно осадки и температура) и времени, совместно с такими характеристиками почвы, как структура, органическая структура и содержание органического вещества. Поэтому долгосрочная обработка любой почвы снижает сопротивляемость агрегатов к физическому разрушению, например, воздействие капель дождя и механической обработки почвы любого рода. Однако, как глинистые минералы в почве, так и органическое вещество стабилизируют почвенные агрегаты и делают их устойчивыми к физическому разрушению. Уменьшение количества органического вещества снижает стабильность агрегатов, особенно, если она и так низкая.
Из этих двух основных свойств почвы, регулирующих образование агрегатов, механическая обработка почвы в любом виде влияет на содержание органического вещества. Степень практичности изменения уровня органического вещества варьирует в зависимости от условий, т.к. уровень органического вещества в значительной мере определяется двумя процессами: накоплением и декомпозицией. Первый определяется в основном количеством внесенной органики, сильно зависящей от осадков и орошения. Второй — преимущественно температурой. Цель сохранения или увеличения уровней органического вещества легче достижима в прохладных, увлажненных условиях, чем в жарких и сухих.
«Свежесть» соединений органического вещества необходима для стабильности агрегатов. В почвенных экосистемах вновь добавленные или частично разложившиеся растительные остатки и продукты их распада, известные также как «молодые гуминовые субстанции», создают более «мобильный» массив органического вещества. Старые или более стабильные гуминовые субстанции, которые более устойчивы к дальнейшему распаду, создают «стабильный» массив органического вещества. Всеобще признано, что мобильный массив органического вещества регулирует силу подачи питательных веществ в почве, особенно азота, тогда как мобильный и стабильный массивы влияют на физические качества почвы, например, формирование агрегатов и структурную стабильность. Образование мобильного и стабильного массивов — динамический процесс, который регулируется несколькими факторами, включая тип и количество внесения органики и ее состав.
Возник большой интерес к определению того, как обработка почвы влияет на структурное развитие и поддержание почвы по отношению к содержанию органического вещества, особенно в связи с появлением технологии no-till. Повышение интенсивности обработки почвы увеличивает потери органического вещества из почвы и снижает агрегативность почвы.
Накопление снега и удержание талых вод
Многие неорошаемые земли получают значительное количество годовых осадков в виде снега. Эффективное накопление воды снега имеет две характеристики: 1) улавливание снега само по себе и 2) улавливание талых вод. Поскольку снег зачастую сопровождается ветром, принципы улавливания снега такие же, как принципы, используемые в защите почв от ветровой эрозии. Растительные остатки на корню, ветрозащитные полосы, полосная обработка и искусственные барьеры использовались для максимизации улавливания снега. Основной принцип этих устройств заключается в создании областей, где снижается скорость ветра с подветренной стороны и барьера, что приводит к улавливанию частиц снега с другой стороны барьера. Повторяющиеся барьеры, например, стерня на корню, удерживают ветер над поверхностью растительных остатков, а, следовательно, «пойманный» снег остается недостижимым для последующих движений ветра.
Исследования ученых с Великих равнин США показали, что стерня на корню сохраняла 37% зимних осадков, а поля под паром без растительных остатков сохраняли лишь 9%. Пропорция поля, покрытая растительными остатками на корню, очевидно, влияет на улавливание снега. Ученые, изучающие влияние высоты среза подсолнечника на удержание снега, обнаружили высокую корреляцию между сохраненной влагой в почве и высотой среза: чем выше срез, тем больше снега улавливается.
Внедрение технологии no-till позволило значительно улучшить улавливание снега при помощи растительных остатков на корню. До начала использования no-till механическая обработка, необходимая для контроля сорняков, приводила к снижению пропорции растительных остатков на корню и общей пропорции покрытия почвы растительными остатками, а, следовательно, к снижению улавливания снега.
Улавливание снегопада остается самой простой частью накопления ресурса влаги снега; улавливание талых вод намного менее предсказуемое и управляемое. Например, если почва замерзает до снегопада, у воды меньше шансов впитаться, по сравнению со случаями, когда почва не замерзла. На северных широтах почвы обычно замерзают до выпадения снега. Более того, глубина промерзания почвы зависит от количества воды в почве осенью, а также от изолирующего эффекта снега, который увеличивается при увеличении глубины снежного покрова. Сухие почвы промерзают глубже и быстрее, чем влажные, но замерзшие сухие почвы снижают отток воды по сравнению с влажными почвами.
Поддержание инфильтрации на должном уровне, когда почва замерзает до снегопада и/или до выпадения зимних дождей, представляет трудность. Уровни инфильтрации замерзших почв определяются двумя факторами: 1) структурой замерзшей почвы, т.е. маленькие гранулы или большие агрегаты, похожие на бетон, 2) содержанием воды в почве во время морозов. Почвы, которые замерзли с низким уровнем содержания влаги, не мешают проникновению воды, т.к. агрегаты оставляют достаточно места для инфильтрации. Наоборот, почвы, замерзшие с большим содержанием воды, замерзают в массивные, плотные структуры (как бетон) и практически не дают воде возможности проникнуть вовнутрь. Резкая оттепель и дождь на таких почвах могут привести к большому оттоку и эрозии. Накопление зимних осадков можно максимизировать, используя следующие принципы: 1) улавливание снега при помощи растительных остатков на корню; 2) максимизация макропор на поверхности в те периоды, когда почва замерзшая.
Читайте также: Плодородие почв категории почвенного плодородия
Синтез принципов накопления воды
Благоприятные условия для инфильтрации на самой поверхности почвы и достаточное количество времени для инфильтрации — ключи к эффективному накоплению воды. Однако наиболее важным принципом является защита поверхности почвы от энергии капли. В течение зимних месяцев в зонах с умеренным климатом, когда еще не появились большие листья для принятия энергии капли и пропускания воды, растительность (растительные остатки) осуществляют функцию снижения уровней оттока. Покрытие впитывает энергию капли, защищает почвенные агрегаты и увеличивает размер макропор, а это, в свою очередь, снижает отток. Более того, в течение сезона роста культуры содержание воды в почве в небольших количествах обеспечивает хороший уровень инфильтрации.
Удержание воды в почве
После того как вода была собрана, испарительное свойство воздуха начинает «вытягивать» ее наружу. Поэтому, даже если никакие культуры не присутствуют на поле, почвы теряют влагу из-за испарения. В данном разделе мы продемонстрируем, как no-till влияет на удержание воды в почве, после того как мы собрали достаточное количество влаги во время осадков. Защитное свойство растительных остатков увеличивает инфильтрацию, т.к. они не только защищают почвенные агрегаты, но и одновременно влияют на скорость испарения, особенно во время начальных стадий испарения, после выпадения осадков.
Демонстрация испарения воды из почвы
Испарение возникает, т.к. потребность воздуха в воде всегда высокая, даже зимой, по отношению к способности почвы удерживать воду. Другими словами, потенциал воздуха всегда отрицателен по отношению к потенциалу почвы. У теплого воздуха больше способность удерживать влагу, чем у холодного. Таким образом, при увеличении температуры потенциал испарения увеличивается. Испарение выше всего, когда почва влажная (высокий водный потенциал), а воздух сухой (т.е. относительная влажность низкая). Когда почвы высыхают у поверхности, вода поднимается к поверхности, чтобы восполнить запасы испарившейся воды (рис. 5). При постоянном испарении расстояние, которое проходит вода, увеличивается, что понижает скорость течения воды к поверхности в виде жидкости или пара, снижается скорость испарения, и поверхность почвы остается сухой (рис. 5). Наконец, вода начинает двигаться к поверхности почвы только в виде пара, что приводит к очень низкой скорости испарения. Каждое последующее выпадение осадков начинает цикл испарения заново, т.к. поверхность почвы опять становится влажной.
Помимо температуры воздуха, другие атмосферные воздействия, например, солнечная радиация и ветер, влияют на испарение. Солнечная радиация дает энергию испарению, а скорость ветра влияет на градиент давления пара на горизонте почва — атмосфера. Высокая влажность и низкая скорость ветра приводят к меньшему градиенту давления пара на горизонте почва — атмосфера и, таким образом, понижают скорость испарения. По мере снижения относительной влажности и увеличения скорости ветра потенциал испарения постепенно увеличивается. В ветреный день влажный воздух постоянно заменяется сухим воздухом на поверхности почвы, приводя к ускорению испарения.
Испарение воды из почвы проходит три стадии. Больше всего воды теряется на первой стадии, а на последующих уровень потерь уменьшается. Испарение на первой стадии зависит от условий окружающей среды (скорость ветра, температура, относительная влажность и солнечная энергия) и потока воды к поверхности. Потери значительно снижаются во время второй стадии, когда количество воды на поверхности почвы снижается. Во время третьей стадии, когда вода двигается на поверхность в виде пара, скорость очень низкая. Наибольший потенциал снижения уровней испарения лежит в первых двух стадиях.
Давайте продемонстрируем, как растительные остатки, оставленные на поверхности почвы, влияют на испарение воды из почвы. Очевидно, они будут отражать солнечную энергию, охлаждая поверхность почвы, а также отражать ветер; оба эти эффекта будут снижать изначальную скорость испарения воды (рис. 6).
Растительные остатки на поверхности почвы, присутствующие в технологии no-till, значительно снижают уровень испарения на первой стадии. Любой материал, например, солома или опилки, или листья, или пластиковая пленка, расстеленные на поверхности почвы, будут защищать землю от воздействия энергии дождя или снижать уровень испарения. Ориентация растительных остатков (на корню, уложенные механически или в виде покрова) также влияет на скорость испарения, т.к. ориентация влияет на аэродинамику и отражающую способность, что, в свою очередь, влияет на баланс солнечной энергии у поверхности. Пример эффективности использования растительных остатков приведен в научной работе Smika (1983). Он измерял потери воды из почвы, возникающие в течение 35-дневного периода без осадков. Потери составляли 23 мм из непокрытой почвы и 20 мм при уложенных растительных остатках, 19 мм при 75% уложенных остатков и 25% остатков на корню и 15 мм при 50% уложенных остатков и 50% остатков на корню на поверхности.
Количество остатков было 4,6 т/га, а остатки на корню были 0,46 м в высоту.
Читателю следует помнить, что растительные остатки не останавливают испарение, они его задерживают. Если проходит большое количество времени, а осадки не выпадают, почва под растительными остатками начнет терять столько же воды, сколько и непокрытая почва. Различия будут заключаться лишь в том, что непокрытая почва будет терять воду быстро, а растительные остатки будут понижать скорость, с которой вода будет покидать почву (рис. 7).
Преимущества замедления испарения при помощи растительных остатков в системе no-till можно продемонстрировать, используя данные рисунка 7. Предположим, дождь выпадает в день 0, т.е. и непокрытая почва (линия, обозначенная ромбиками) и почва, покрытая растительными остатками (линия, обозначенная квадратиками), находятся в одинаковых условиях в плане содержания влаги. Через 3-5 дней на непокрытой почве произошло очень быстрое испарение, и поверхность будет почти воздушно сухой. В отличие от этого, на почве, покрытой растительными остатками, скорость испарения была намного ниже, и она не просыхает до 12-14 дня после выпадения дождя. Теперь давайте представим, что на седьмой день выпадает еще один дождь; т.к. непокрытая почва на седьмой день уже сухая, дождь должен снова смочить сухую почву, прежде чем начнется сохранение влаги. Если это очень непродолжительный дождь, восполнится только то количество воды, которое испарилось. В отличие от этого, на почве, которая была покрыта растительными остатками, испарение проходило очень медленно, поэтому ко дню седьмому почва под растительными остатками все еще влажная (показано на рис. 6). Это значит, что, если дождь выпадает на седьмой день, ему не надо смачивать сухую почву (ее нет), поэтому вода сразу начинает двигаться вглубь почвы, и происходит ее накопление.
Замедление испарения при помощи растительных остатков в системах no-till помогает сохранять влагу, т.к. поверхность почвы высыхает медленнее. Однако если дождь не будет выпадать в течение длительного периода, почва, покрытая растительными остатками, не будет сохранять больше влаги, чем непокрытая.
Читателю следует понять, что, даже если проходит много времени между дождями и испарение высушивает почву, растительные остатки в любом случае полезны, т.к. они будут защищать почву от энергии капель дождя, когда дождь пойдет снова.
Демонстрация влияния обработки почвы на испарение влаги
Когда почву механически обрабатывают, влажная почва открывается на поверхности. Это значит, что начинается быстрое испарение сразу после обработки (рис. 8). Очевидно, что, если механическая обработка используется для борьбы с сорняками, она приводит к расходованию влаги, т.к. постоянно подвергает влажную почву быстрому испарению на поверхности. В отличие от этого, технология no-till, в которой используется контроль сорняков при помощи гербицидов, не приводит к испарению, т.к. воздействия на почву не оказывается. Почва остается влажнее на поверхности, а, следовательно, следующий дождь не будет заново смачивать сухую почву, а будет проникать глубже в почву и накапливаться для использования в будущем.
Выводы
Ключом к эффективному улавливанию воды являются благоприятные условия на поверхности почвы для того, чтобы вода могла сразу входить в почву, а также те (условия), которые дают достаточно времени для инфильтрации. Наиболее важный принцип для достижения вхождения воды в почву — защита поверхности от энергии капель дождя. Система no-till обеспечивает покрытие растущими культурами и растительными остатками. Покрытие поглощает энергию капель, защищает почвенные агрегаты и увеличивает размер макропор. В то же время, это покрытие замедляет отток, увеличивая тем самым накопление воды в почве для использования последующей культурой. Для сохранения максимального количества накопленной влаги необходимо свести к минимуму испарение. No-till сокращает испарение, т.к. при этой технологии на поверхности остаются растительные остатки, которые снижают температуру почвы и поднимают ветер над почвой. Использование воды сорняками — трата влаги, которая могла бы быть доступна для культурных растений. Механическая обработка обычно мгновенно прекращает вынос воды сорняками, однако открывает влажную почву воздействию атмосферы, что приводит к увеличению потерь в результате испарения. При использовании системы no-till контроль сорняков осуществляется при помощи гербицидов, что предотвращает пагубное воздействие на почву по сравнению с механической обработкой, при этом вода накапливается в почве. Это особенно важно в таких странах, как Украина, где основная часть осадков выпадает летом.
- Свежие записи
- Как избавиться от мошек в цветах комнатных растений
- Что добавить в воду чтобы цветы дольше стояли
- Какие цветы сочетаются друг с другом на клумбе
- Жмых от кофе как удобрение для комнатных цветов
- Белый липкий налет на комнатных цветах как избавиться